分布式事务的几种方案

本文探讨了数据库事务管理中的两阶段提交(2PC/XA)及TCC方案,重点介绍了TCC方案如何通过Try-Confirm-Cancel三个步骤解决分布式事务问题,并对比了其与2PC的区别。

数据库事务方案(2PC/XA)

https://blog.youkuaiyun.com/define_us/article/details/83184753

是唯一一个两阶段提交不能解决的困境是:当协调者在发出commit T消息后宕机了,而唯一收到这条命令的一个参与者也宕机了,这个时候这个事务就处于一个未知的状态,没有人知道这个事务到底是提交了还是未提交,从而需要数据库管理员的介入,防止数据库进入一个不一致的状态。当然,如果有一个前提是:所有节点或者网络的异常最终都会恢复,那么这个问题就不存在了,协调者和参与者最终会重启,其他节点也最终也会收到commit T的信息。

TCC方案

在这里插入图片描述
显然执行者需要至少执行三个接口。

在这里插入图片描述
一般而言,协调者的决策可以让事务的一个参与方进行。但是,一般大公司都会采用单独的协调者,即提供单独应用作为事务服务。

空回滚

所谓空回滚,是指并没有收到try,就要进行cancel操作

事务悬挂问题

表示先收到cancel,在收到try

总结

TCC特别适合在电商场景。用户支付先完成自己的事务,付款

最大努力通知

本地消息表

本地消息表其实就是利用了 各系统本地的事务来实现分布式事务。

本地消息表顾名思义就是会有一张存放本地消息的表,一般都是放在数据库中,然后在执行业务的时候 将业务的执行和将消息放入消息表中的操作放在同一个事务中,这样就能保证消息放入本地表中业务肯定是执行成功的。

然后再去调用下一个操作,如果下一个操作调用成功了好说,消息表的消息状态可以直接改成已成功。

如果调用失败也没事,会有 后台任务定时去读取本地消息表,筛选出还未成功的消息再调用对应的服务,服务更新成功了再变更消息的状态。

消息事务

在这里插入图片描述

内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练与应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化与训练,到执行分类及结果优化的完整流程,并介绍了精度评价与通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化建模与参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
内容概要:本文系统阐述了企业新闻发稿在生成式引擎优化(GEO)时代下的全渠道策略与效果评估体系,涵盖当前企业传播面临的预算、资源、内容与效果评估四大挑战,并深入分析2025年新闻发稿行业五大趋势,包括AI驱动的智能化转型、精准化传播、首发内容价值提升、内容资产化及数据可视化。文章重点解析央媒、地方官媒、综合门户和自媒体四类媒体资源的特性、传播优势与发稿策略,提出基于内容适配性、时间节奏、话题设计的策略制定方法,并构建涵盖品牌价值、销售转化与GEO优化的多维评估框架。此外,结合“传声港”工具实操指南,提供AI智能投放、效果监测、自媒体管理与舆情应对的全流程解决方案,并针对科技、消费、B2B、区域品牌四大行业推出定制化发稿方案。; 适合人群:企业市场/公关负责人、品牌传播管理者、数字营销从业者及中小企业决策者,具备一定媒体传播经验并希望提升发稿效率与ROI的专业人士。; 使用场景及目标:①制定科学的新闻发稿策略,实现从“流量思维”向“价值思维”转型;②构建央媒定调、门户扩散、自媒体互动的立体化传播矩阵;③利用AI工具实现精准投放与GEO优化,提升品牌在AI搜索中的权威性与可见性;④通过数据驱动评估体系量化品牌影响力与销售转化效果。; 阅读建议:建议结合文中提供的实操清单、案例分析与工具指南进行系统学习,重点关注媒体适配性策略与GEO评估指标,在实际发稿中分阶段试点“AI+全渠道”组合策略,并定期复盘优化,以实现品牌传播的长期复利效应。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值