模拟退火算法是用来求解最优化问题的算法。比如著名的TSP问题,函数最大值最小值问题等等。接下来将以如下几个方面来详细介绍模拟退火算法。
Contents
- 模拟退火算法认识
- 模拟退火算法描述
- 费马点问题求解
- 最小包含球问题求解
- 函数最值问题求解
TSP问题求解
- 模拟退火算法认识
爬山算法也是一个用来求解最优化问题的算法,每次都向着当前上升最快的方向往上爬,但是初始化不同可能
会得到不同的局部最优值,模拟退火算法就可能跳出这种局部最优解的限制。模拟退火算法是模拟热力学系统
中的退火过程。在退火过程中是将目标函数作为能量函数。大致过程如下:初始高温 => 温度缓慢下降=> 终止在低温 (这时能量函数达到最小,目标函数最小)
在热力学中的退火过程大致是变温物体缓慢降温而达到分子之间能量最低的状态。设热力学系统S中有有限个且
离散的n个状态,状态的能量为,在温度下,经过一段时间达到热平衡,这时处于状态的概率为
模拟退火算法也是贪心算法,但是在其过程中引入了随机因素,以一定的概率接受一个比当前解要差的解,并且
这个概率随着时间的推移而逐渐降低。
http://blog.youkuaiyun.com/acdreamers/article/details/10019849
http://www.bubuko.com/infodetail-832706.html
https://zhuanlan.zhihu.com/p/23968011