Largest Point
Time Limit: 1500/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Submission(s): 795 Accepted Submission(s): 327
Problem Description
Given the sequence A with n integers t1,t2,⋯,tn.
Given the integral coefficients a and b.
The fact that select two elements ti and tj of A and i≠j to
maximize the value of at2i+btj,
becomes the largest point.
Input
An positive integer T,
indicating there are T test
cases.
For each test case, the first line contains three integers corresponding to n (2≤n≤5×106), a (0≤|a|≤106) and b (0≤|b|≤106). The second line contains n integers t1,t2,⋯,tn where 0≤|ti|≤106 for 1≤i≤n.
The sum of n for all cases would not be larger than 5×106.
For each test case, the first line contains three integers corresponding to n (2≤n≤5×106), a (0≤|a|≤106) and b (0≤|b|≤106). The second line contains n integers t1,t2,⋯,tn where 0≤|ti|≤106 for 1≤i≤n.
The sum of n for all cases would not be larger than 5×106.
Output
The output contains exactly T lines.
For each test case, you should output the maximum value of at2i+btj.
For each test case, you should output the maximum value of at2i+btj.
Sample Input
2 3 2 1 1 2 3 5 -1 0 -3 -3 0 3 3
Sample Output
Case #1: 20 Case #2: 0模拟太难想了,种类繁多。要快速解决这问题,直接暴力,只要考虑a,b,的值就行了。。。#include<iostream> #include<algorithm> #include<cmath> using namespace std; long long a[5000001]; long long ans1,ans2,s1,s2,ans3,ans4; int main() { int n,t,ca=1,o; long long m,k; scanf("%d",&t); while(t--) { ans1=ans2=ans3=ans4=0; scanf("%d%I64d%I64d",&n,&m,&k); for(int i=1;i<=n;i++) { scanf("%I64d",&a[i]); } //sort(a+1,a+1+n); s1=LLONG_MIN; for(int i=1;i<=n;i++) { s2=m*a[i]*a[i]; if(s1<s2) { s1=s2; o=i; } } ans1=s1; s1=LLONG_MIN; for(int i=1;i<=n;i++) { if(i!=o) { s2=a[i]*k; s1=max(s1,s2); } } ans2=s1; s1=LLONG_MIN; for(int i=1;i<=n;i++) { s2=a[i]*k; if(s1<s2) { s1=s2; o=i; } } ans3=s1; s1=LLONG_MIN; for(int i=1;i<=n;i++) { if(i!=o) { s2=m*a[i]*a[i]; s1=max(s1,s2); } } ans4=s1; ans1=ans1+ans2; ans3=ans3+ans4; ans4=max(ans1,ans3); printf("Case #%d: %I64d\n",ca++,ans4); } return 0; }