function digitalDivide_Callback(hObject, eventdata, handles)
% hObject handle to digitalDivide (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global Img_noNoise
global Img_Divide
global t1
global n
global isnoNoise
global isDivide
isDivide = 0;
Img_Divide = Img_noNoise;
[rowBit, colBit] = find(Img_Divide == 1); %找到字符的最大范围 rowBit与colBit都是与字符像素点个数相同的一维数组
imin=min(rowBit);
imax=max(rowBit);
jmin=min(colBit);
jmax=max(colBit);
%下面的代码用于标识出每个字符的范围
flag = false;%flag 用作是否进入一个字符分割的标志
k = 1;
for j = jmin : jmax + 1
if (max(size(find(Img_Divide(imin : imax, j) == 1))) - 1) == 0 %在第j列中没有找到像素为1(白点, 代表字符)的点
if flag == true;
t1(1, k) = j - 1; %t1的第一行偶数记录分割数字的右边界
k = k + 1;
flag = false;
end
else%在第j列中存在像素为1(白点,代表字符)的点
if flag == false
flag = true;
t1(1, k) = j; %t1的第一行奇数记录分割数字的左边界
k = k + 1;
end
end
end
n = max(size(t1)) / 2;%m为待识别数字的个数
for i = 1 : n
j = 2 * i;
for k = imin : imax%由上到下寻找上边界
if (max(size(find(Img_noNoise(k, t1(1, j - 1) : t1(1, j)) == 1))) - 1) > 0% 在对应的列中找到了分割数字的上边界
t1(2,j - 1) = k; %t1的第二行奇数列分别记录分割数字的上边界
break;
end
end
end
for i = 1 : n
j = 2 * i;
for k = imax : -1 : imin%由下到上寻找下边界
if (max(size(find(Img_noNoise(k, t1(1, j - 1) : t1(1, j)) == 1))) -1) > 0% 在对应的列中找到了分割数字的下边界
t1(2, j) = k; %t1的第二行偶数列分别记录分割数字的下边界
break;
end
end
end
axes(handles.axes1);
imshow(Img_noNoise)
hold on
for i = 1 : n
j = 2 * i;
plot([t1(1, j-1), t1(1, j)], [t1(2, j-1), t1(2, j-1)], 'red');
plot([t1(1, j-1), t1(1, j)], [t1(2, j), t1(2, j)], 'red');
plot([t1(1, j-1), t1(1, j-1)], [t1(2, j-1), t1(2, j)],'red');
plot([t1(1, j), t1(1, j)], [t1(2, j-1), t1(2, j)], 'red');
end
hold off
图像分割
最新推荐文章于 2025-04-12 15:57:49 发布