【洛谷3110】【USACO14DEC】驮运Piggy Back

本文探讨了两只奶牛如何以最小的能量消耗返回谷仓的问题。通过分析不同行走方式的能量消耗,采用SPFA算法求解最短路径问题,最终确定最优方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

Bessie and her sister Elsie graze in different fields during the day, and in the evening they both want to walk back to the barn to rest. Being clever bovines, they come up with a plan to minimize the total amount of energy they both spend while walking.

Bessie spends B units of energy when walking from a field to an adjacent field, and Elsie spends E units of energy when she walks to an adjacent field. However, if Bessie and Elsie are together in the same field, Bessie can carry Elsie on her shoulders and both can move to an adjacent field while spending only P units of energy (where P might be considerably less than B+E, the amount Bessie and Elsie would have spent individually walking to the adjacent field). If P is very small, the most energy-efficient solution may involve Bessie and Elsie traveling to a common meeting field, then traveling together piggyback for the rest of the journey to the barn. Of course, if P is large, it may still make the most sense for Bessie and Elsie to travel

separately. On a side note, Bessie and Elsie are both unhappy with the term "piggyback", as they don't see why the pigs on the farm should deserve all the credit for this remarkable form of

transportation.

Given B, E, and P, as well as the layout of the farm, please compute the minimum amount of energy required for Bessie and Elsie to reach the barn.

Bessie 和 Elsie在不同的区域放牧,他们希望花费最小的能量返回谷仓。从一个区域走到一个相连区域,Bessie要花费B单位的能量,Elsie要花费E单位的能量。如果某次他们两走到同一个区域,Bessie 可以背着 Elsie走路,花费P单位的能量走到另外一个相连的区域,满足P<B+E。相遇后,他们可以一直背着走,也可以独立分开。

输入输出格式

输入格式:

INPUT: (file piggyback.in)

The first line of input contains the positive integers B, E, P, N, and M. All of these are at most 40,000. B, E, and P are described above. N is the number of fields in the farm (numbered 1..N, where N >= 3), and M is the number of connections between fields. Bessie and Elsie start in fields 1 and 2, respectively. The barn resides in field N.

The next M lines in the input each describe a connection between a pair of different fields, specified by the integer indices of the two fields. Connections are bi-directional. It is always possible to travel from field 1 to field N, and field 2 to field N, along a series of such connections.

输出格式:

OUTPUT: (file piggyback.out)

A single integer specifying the minimum amount of energy Bessie and

Elsie collectively need to spend to reach the barn. In the example

shown here, Bessie travels from 1 to 4 and Elsie travels from 2 to 3

to 4. Then, they travel together from 4 to 7 to 8.

输入输出样例

输入样例#1:
4 4 5 8 8 
1 4 
2 3 
3 4 
4 7 
2 5 
5 6 
6 8 
7 8 
输出样例#1:
22 
题解
 先考虑一下,如果两人相遇后再分开会不会使结果更优,设第一个人代价是a,第二个人的代价是b(a>b),一起走的代价
为p,现在有两条道路x,y.分开走的代价(x<y)ax+by,一起走的待代价是p*x,显然ax+by>px(将y边成x,左边变小但仍大于右边)。x>y
的情况同理,所以一定是合起来走更优。这样就枚举中间合并的点就行了。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
const int maxn=100010;
int pre[maxn],last[maxn],other[maxn],num,w[maxn];
int db[maxn],dp[maxn],de[maxn],b,e,p,n,m;;
bool vis[maxn];
void add(int x,int y,int z){
    num++;
    pre[num]=last[x];
    last[x]=num;
    other[num]=y;
    w[num]=z;
}
void spfa(int x,int *dis){
    queue<int>q;
    //memset(dis,127/3,sizeof(dis));memset好像不能用 
    for(int i=1;i<=n;i++)
    dis[i]=10000000;
    memset(vis,0,sizeof(vis));
    q.push(x);
    vis[x]=1;
    dis[x]=0;
    while(!q.empty()){
        int t=q.front();
        q.pop();
        vis[t]=0;
        for(int i=last[t];i;i=pre[i]){
            int v=other[i];
        //    cout<<dis[v]<<" "<<dis[t]<<" "<<w[i]<<endl; 
            if(dis[v]>dis[t]+w[i]){
                dis[v]=dis[t]+w[i];
                if(!vis[v]){
                    q.push(v);
                    vis[v]=1;
                }
            }
        }
    }
}
int main(){
    int x,y,z;
    scanf("%d%d%d%d%d",&b,&e,&p,&n,&m);
    for(int i=1;i<=m;i++){
        scanf("%d%d",&x,&y);
        add(x,y,1);
        add(y,x,1);
    }
    spfa(1,db);
    spfa(2,de);
    spfa(n,dp);
    int ans=2147483647;
    for(int i=1;i<=n;i++)
    ans=min(ans,dp[i]*p+db[i]*b+de[i]*e);
    
    printf("%d\n",ans);
//    system("pause");
    return 0;
}


资源下载链接为: https://pan.quark.cn/s/1bfadf00ae14 “STC单片机电压测量”是一个以STC系列单片机为基础的电压检测应用案例,它涵盖了硬件电路设计、软件编程以及数据处理等核心知识点。STC单片机凭借其低功耗、高性价比和丰富的I/O接口,在电子工程领域得到了广泛应用。 STC是Specialized Technology Corporation的缩写,该公司的单片机基于8051内核,具备内部振荡器、高速运算能力、ISP(在系统编程)和IAP(在应用编程)功能,非常适合用于各种嵌入式控制系统。 在源代码方面,“浅雪”风格的代码通常简洁易懂,非常适合初学者学习。其中,“main.c”文件是程序的入口,包含了电压测量的核心逻辑;“STARTUP.A51”是启动代码,负责初始化单片机的硬件环境;“电压测量_uvopt.bak”和“电压测量_uvproj.bak”可能是Keil编译器的配置文件备份,用于设置编译选项和项目配置。 对于3S锂电池电压测量,3S锂电池由三节锂离子电池串联而成,标称电压为11.1V。测量时需要考虑电池的串联特性,通过分压电路将高电压转换为单片机可接受的范围,并实时监控,防止过充或过放,以确保电池的安全和寿命。 在电压测量电路设计中,“电压测量.lnp”文件可能包含电路布局信息,而“.hex”文件是编译后的机器码,用于烧录到单片机中。电路中通常会使用ADC(模拟数字转换器)将模拟电压信号转换为数字信号供单片机处理。 在软件编程方面,“StringData.h”文件可能包含程序中使用的字符串常量和数据结构定义。处理电压数据时,可能涉及浮点数运算,需要了解STC单片机对浮点数的支持情况,以及如何高效地存储和显示电压值。 用户界面方面,“电压测量.uvgui.kidd”可能是用户界面的配置文件,用于显示测量结果。在嵌入式系统中,用
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值