真的是不行了,很长时间没有玩过这玩意儿了,一下子上来,还真是很不习惯。碰了很多壁,终于碰到了这么一道相对比较简单的题目,也算是捡回一点点自信吧,希望以后会越走越好。
下面先给出原题:
ZOJ Problem Set - 1045
HangOver
Time Limit: 1 Second Memory Limit: 32768 KB
How far can you make a stack of cards overhang a table? If you have one card, you can create a maximum overhang of half a card length. (We're assuming that the cards must be perpendicular to the table.) With two cards you can make the top card overhang the bottom one by half a card length, and the bottom one overhang the table by a third of a card length, for a total maximum overhang of 1/2 + 1/3 = 5/6 card lengths. In general you can make n cards overhang by 1/2 + 1/3 + 1/4 + ... + 1/(n + 1) card lengths, where the top card overhangs the second by 1/2, the second overhangs tha third by 1/3, the third overhangs the fourth by 1/4, etc., and the bottom card overhangs the table by 1/(n + 1). This is illustrated in the figure below.
The input consists of one or more test cases, followed by a line containing the number 0.00 that signals the end of the input. Each test case is a single line containing a positive floating-point number c whose value is at least 0.01 and at most 5.20; c will contain exactly three digits.
For each test case, output the minimum number of cards necessary to achieve an overhang of at least c card lengths. Use the exact output format shown in the examples.
Example input:
1.00
3.71
0.04
5.19
0.00
Example output:
3 card(s)
61 card(s)
1 card(s)
273 card(s)
Source: Mid-Central USA 2001
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=45
题目不难,直接给出代码吧:
1: #include<iostream>
2: #include<vector>
3:
4: using namespace std;
5:
6: const double MINVALUE = 0.00000001;
7: void IntialPro(vector<double>& vec)
8: {
9: double hangLength = 0.0;
10: for(int n = 1;hangLength <= 5.20; n++)
11: {
12: hangLength += 1/static_cast<double>(n + 1);
13: vec.push_back(hangLength);
14: }
15: }
16: int main(void)
17: {
18: vector<double> hangOver;
19: IntialPro(hangOver);
20:
21: double input;
22:
23: while(cin>>input)
24: {
25: if(input > -1*MINVALUE && input < MINVALUE)
26: {
27: break;
28: }
29: for(size_t i = 0; i < hangOver.size(); i++)
30: {
31: if(hangOver[i] > input)
32: {
33: cout<<i + 1<<" card(s)"<<endl;
34: break;
35: }
36: }
37: }
38: return 0;
39: }
在这段代码中,没有什么特别的需要主要的,唯一让我感觉到有点意思的是double类型与0.00进行比较的时候的特点。众所周知,double类型在内部存储的时候是存在精确缺失的,所以,要让double与0进行比较的时候,不能直接来,需要定义一个很小的值,就像我程序中的那样进行比较。这种技巧,我也是在某次朋友说要考考我的时候得知的。也许在验证条件不是很苛刻的时候,double直接与0比较的时候也能通过,但是一旦比较严格的话,无疑会失败的。
这同时,让我想到了其它的几个比较。也是编程习惯的问题(在《高质量C、C++编程指南》中有讲)。如下:
bool值的比较(其中flag是一个bool类型的变量)
if(flag)
指针类型与零的比较(其中p的定义为:char *p;):
if(p == NULL)