From Rails to Erlyweb - Part II

Updated Aug 23: Please see From Rails to Erlyweb - Part II Manage Project - Reloaded

Updated July 15: store the database configuration in <opaque> session of yaws.conf

Updated May 2: erlweb:compile(AppDir::string(), Options::[option()]) has option: {auto_compile, Val}, where Val is 'true', or 'false'. In case of development, you can turn on {auto_compile, true}. So, you only need to run erlyweb_app:boot(myapp) once.

2. Manage project

Erlyweb provides erlyweb:compile(App, ..) to compile the source files under app directory. To start an app, you usually should erlydb:start(mysql, ....) and compile app files first. To make life easy, you can put some scripting like code under myproject\script directory. Here's my project source tree:

myproject
  + apps
  |   + myapp
  |       + ebin   
  |       + include
  |       + nbproject
  |       + src
  |           + components
  |           + lib
  |           + services
  |       + test
  |       + www
  + config
  |   * yaws.conf
  + script
      + ebin
      + src
           * erlyweb_app.erl

Where, config/yaws.conf contains the confsiguration that will copy/paste to your real yaws.conf file. Here's mine:

## This is the configuration of apps that will copy/paste to your yaws.conf.

ebin_dir = D:/myapp/trunk/script/ebin
ebin_dir = D:/myapp/trunk/apps/myapp/ebin

<server localhost>
  port = 8000
  listen = 0.0.0.0
  docroot = D:/myapp/trunk/apps/myapp/www
  appmods = </myapp, erlyweb>
  <opaque>
    appname = myapp
    hostname = "localhost"
    username = "mememe"
    password = "pwpwpw"
    database = "myapp_development"  
        </opaque>
</server>

You may have noticed, all beams under D:/myapp/trunk/script/ebin and D:/myapp/trunk/apps/myapp/ebin will be auto-loaded by yaws.

erlyweb_app.erl is the boot scripting code, which will be used to start db connection and compile the code. Currently I run these scripts manually. I'll talk later.

-module(erlyweb_app).

-export([start/1]).

-export([main/1, 
   boot/1, 
   build/1, 
   decompile/2
        ]).

-include("yaws.hrl").

%% @doc call back funtion when yaws start an app  
%% @see man yaws.conf
%%      start_mod = Module
%%          Defines  a  user  provided  callback  module.  At startup of the
%%          server, Module:start/1 will  be  called.   The  #sconf{}  record
%%          (defined  in  yaws.hrl) will be used as the input argument. This
%%          makes it possible for  a  user  application  to  syncronize  the
%%          startup  with  the  yaws  server as well as getting hold of user
%%          specific  configuration  data,  see  the  explanation  for   the
%%          

To build it,

> erlc -I /opt/local/lib/yaws/include erlyweb_app.erl

The erlyweb_app.erl is almost escript ready, but I use it as module functions currently. It's pre-compiled and erlyweb_app.beam is placed under script/ebin

So, I start myapp by steps:

cd \myproject
yaws -i -sname yaws
1> erlyweb_app:build(myapp).

The erlyweb_app.erl is almost escript ready, but I use it as module functions currently. It's pre-compiled and erlyweb_app.beam is placed under script/ebin

After I made changes to myapp, I run above erlyweb_app:build(myapp). again, then everything is up to date.

This is surely not the best way to handle the write-compile-run-test cycle, I'll improve the scripting to let starting yaws as a node, then hot-swap the compiled code to it.

It's a good experience to play with Rails, I like rake db:migrate, script, config folders of Rails. And Grails also brings some good idea to manage web app project tree. I'll try to bring them into project manager of ErlyBird.

Next part, I'll talk about the magic behind Erlyweb, and why I prefer the magic of Erlyweb to Rails.

内容概要:本文介绍了基于SMA-BP黏菌优化算法优化反向传播神经网络(BP)进行多变量回归预测的项目实例。项目旨在通过SMA优化BP神经网络的权重和阈值,解决BP神经网络易陷入局部最优、收敛速度慢及参数调优困难等问题。SMA算法模拟黏菌寻找食物的行为,具备优秀的全局搜索能力,能有效提高模型的预测准确性和训练效率。项目涵盖了数据预处理、模型设计、算法实现、性能验证等环节,适用于多变量非线性数据的建模和预测。; 适合人群:具备一定机器学习基础,特别是对神经网络和优化算法有一定了解的研发人员、数据科学家和研究人员。; 使用场景及目标:① 提升多变量回归模型的预测准确性,特别是在工业过程控制、金融风险管理等领域;② 加速神经网络训练过程,减少迭代次数和训练时间;③ 提高模型的稳定性和泛化能力,确保模型在不同数据集上均能保持良好表现;④ 推动智能优化算法与深度学习的融合创新,促进多领域复杂数据分析能力的提升。; 其他说明:项目采用Python实现,包含详细的代码示例和注释,便于理解和二次开发。模型架构由数据预处理模块、基于SMA优化的BP神经网络训练模块以及模型预测与评估模块组成,各模块接口清晰,便于扩展和维护。此外,项目还提供了多种评价指标和可视化分析方法,确保实验结果科学可信。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值