效果

代码
from sklearn.datasets import load_iris
import numpy as np
dataset=load_iris()
X=dataset.data
Y=dataset.target
X=np.array(X,dtype='float')
Y=np.array(Y,dtype='int')
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import MinMaxScaler
X_transformed=MinMaxScaler().fit_transform(X)
X_train, X_test, Y_train, Y_test=train_test_split(X_transformed, Y, random_state=14)
estimator=KNeighborsClassifier()
estimator.fit(X_train,Y_train)
Y_predicted=estimator.predict(X_test)
accuracy=np.mean(Y_test==Y_predicted)*100
print("方法1:The accuracy is {0:.1f}%".format(accuracy))
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import MinMaxScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import cross_val_score
Scale=MinMaxScaler()
Predict=KNeighborsClassifier()
scaling_pipeline=Pipeline([('scale',Scale),('predict',Predict)])
scores=cross_val_score(scaling_pipeline, X, Y, scoring="accuracy")
accuracy=np.mean(scores)*100
print("方法2:The accuracy is {0:.1f}%".format(accuracy))