心脏病数据集在csv文件中,示例如下:
age,sex,cp,trestbps,chol,fbs,restecg,thalach,exang,oldpeak,slope,ca,thal,target 63,1,1,145,233,1,2,150,0,2.3,3,0,fixed,0 67,1,4,160,286,0,2,108,1,1.5,2,3,normal,1 67,1,4,120,229,0,2,129,1,2.6,2,2,reversible,0 37,1,3,130,250,0,0,187,0,3.5,3,0,normal,0 41,0,2,130,204,0,2,172,0,1.4,1,0,normal,0 56,1,2,120,236,0,0,178,0,0.8,1,0,normal,0 62,0,4,140,268,0,2,160,0,3.6,3,2,normal,1 57,0,4,120,354,0,0,163,1,0.6,1,0,normal,0 63,1,4,130,254,0,2,147,0,1.4,2,1,reversible,1
下载地址: https://www.kaggle.com/ronitf/heart-disease-uci
import pandas as pd import numpy as np import tensorflow as tf from tensorflow import feature_column from sklearn.model_selection import train_test_split#依赖sklearn库 path='heart.csv' dataframe=pd.read_csv(path) df_data=pd.read_csv(path) train,test=train_test_split(df_data,test_size=0.2) train,val=train_test_split(train,test_size=0.2) # prin