1030 Travel Plan

本文介绍了一种寻找无向图中两点间最短距离且权重最小路径的方法,提供了两种实现方式:暴力动态规划和迪杰斯特拉算法,并附带完整的C/C++代码示例。

A traveler's map gives the distances between cities along the highways, together with the cost of each highway. Now you are supposed to write a program to help a traveler to decide the shortest path between his/her starting city and the destination. If such a shortest path is not unique, you are supposed to output the one with the minimum cost, which is guaranteed to be unique.

Input Specification:

Each input file contains one test case. Each case starts with a line containing 4 positive integers N, M, S, and D, where N (≤500) is the number of cities (and hence the cities are numbered from 0 to N−1); M is the number of highways; S and D are the starting and the destination cities, respectively. Then M lines follow, each provides the information of a highway, in the format:

City1 City2 Distance Cost

where the numbers are all integers no more than 500, and are separated by a space.

Output Specification:

For each test case, print in one line the cities along the shortest path from the starting point to the destination, followed by the total distance and the total cost of the path. The numbers must be separated by a space and there must be no extra space at the end of output.


Sample Input:

4 5 0 3
0 1 1 20
1 3 2 30
0 3 4 10
0 2 2 20
2 3 1 20

Sample Output:

0 2 3 3 40

题目大意

求无向图中,某两点间最短距离且权重最小的路径


思路

暴力动规 or 帝洁磕四


C/C++  (暴力动规)

#include<bits/stdc++.h>
using namespace std;
vector<int> road[501],key,result;
int N,M,st,ed,len[501][501],cost[501][501],lenKey=99999999,costKey;
void findRoad(int now,int sumLen,int sumCost);
int main()
{
    int a,b,c,d;
    cin >> N >> M >> st >> ed;
    while (M--){
        cin >> a >> b >> c >> d;
        road[a].push_back(b);
        road[b].push_back(a);
        len[a][b] = len[b][a] = c;
        cost[a][b] = cost[b][a] = d;
    }
    findRoad(st,0,0);
    for(int x:result) cout << x << " ";
    cout << ed << " " << lenKey << " " << costKey;
    return 0;
}
bool apr[501];
void findRoad(int now,int sumLen,int sumCost)
{
    if(apr[now] || sumLen>lenKey) return;
    if(now==ed){
        if(sumLen<lenKey || (sumLen==lenKey && sumCost<costKey)){
            lenKey = sumLen;
            costKey = sumCost;
            result.assign(key.begin(),key.end());
        }

        return;
    }
    apr[now] = true;
    key.push_back(now);
    for(int x:road[now]) findRoad(x,sumLen+len[now][x],sumCost+cost[now][x]);
    key.pop_back();
    apr[now] = false;
}


C/C++ (Dijkstra)

#include<bits/stdc++.h>
using namespace std;
int N,M,road[501][501],cost[501][501],edC,st,ending;
int ed[501],last[501],edCost[501];
void Dijkstra(){
    memset(ed,0x3f,sizeof ed);
    memset(edCost,0,sizeof edCost);
    last[st] = -1;
    ed[st] = 0;
    bool apr[501] = {false};
    for(int z=0;z<N;z++){
        int key = -1;
        for(int z1=0;z1<N;z1++){
            if(!apr[z1] && (key==-1 || ed[z1]<ed[key])) key = z1;
        }
        apr[key] = true;
        for(int z1=0;z1<N;z1++){
            int len = ed[key]+road[key][z1];
            int money = edCost[key] + cost[key][z1];
            if(ed[z1]>len || (ed[z1]==len && edCost[z1]>money)){
                ed[z1] = len;
                last[z1] = key;
                edCost[z1] = money;
            };
        }
    }
}
void print(int now){
    if(now!=-1) print(last[now]);
    else return;
    printf("%d ",now);
    if(now==ending) printf("%d %d",ed[now],edCost[now]);
}
int main()
{
    memset(road,0x3f,sizeof road);
    cin >> N >> M >> st >> ending;
    while (M--){
        int a,b,c,d;
        cin >> a >> b >> c >> d;
        road[a][b] = road[b][a] = c;
        cost[a][b] = cost[b][a] = d;
    }
    Dijkstra();
    print(ending);
    return 0;
}

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三块不一样的石头

十分满意,一分打赏~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值