八:二叉搜索树的后序遍历

二叉搜索树:(又称:二叉查找树,二叉排序树)

满足性质:

(1) 它或者是一棵空树;

(2) 或者是具有下列性质的二叉树:

  <1> 若左子树不空,则左子树上所有结点的值均小于它的根结点的值;

  <2> 若右子树不空,则右子树上所有结点的值均大于它的根结点的值;

  <3> 左、右子树也分别为二查找序树;

 

问题描述:

输入一个整数数组,判断该数组是不是某二叉查找树的后序遍历的结果。如果是返回true,否则返回false。


解析:

根据后序遍历的定义,如果一个序列是二叉树的后续遍历的结果,那么我们不难得出,序列的最后一个节点必定是二叉树的根节点,除了根节点外,序列中前一部分是二叉树的左子树的节点,后面一部分是二叉树的右子树的节点。同理,左右子树的遍历结果也具有一样的特点。


代码如下:

bool VerifySquenceOfBST(int sequence[], int length)

{

    if(sequence== NULL || length <= 0)

        returnfalse;

 

    int root =sequence[length - 1];

 

    // 在二叉搜索树中左子树的结点小于根结点

    int i = 0;

    for(; i <length - 1; ++ i)

    {

       if(sequence[i] > root)

           break;

    }

 

    // 在二叉搜索树中右子树的结点大于根结点

    int j = i;

    for(; j <length - 1; ++ j)

    {

       if(sequence[j] < root)

           return false;

    }

 

    // 判断左子树是不是二叉搜索树

    bool left =true;

    if(i > 0)

        left =VerifySquenceOfBST(sequence, i);

 

    // 判断右子树是不是二叉搜索树

    bool right =true;

    if(i <length - 1)

        right =VerifySquenceOfBST(sequence + i, length - i - 1);

 

    return (left&& right);

}




注:《剑指offer》学习笔记

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值