真正并发进程代数中的抽象算子、验证规则与CTC演算
1. 抽象算子公理与递归验证规则
1.1 抽象算子公理
抽象算子的公理如下表所示:
| 编号 | 公理 |
| — | — |
| T I1 | (e \notin I) 时,(\tau_I (e) = e) |
| T I2 | (e \in I) 时,(\tau_I (e) = \tau) |
| T I3 | (\tau_I (\delta) = \delta) |
| T I4 | (\tau_I (x + y) = \tau_I (x) + \tau_I (y)) |
| PT I1 | (\tau_I (x \oplus_{\pi} y) = \tau_I (x) \oplus_{\pi} \tau_I (y)) |
| T I5 | (\tau_I (x \cdot y) = \tau_I (x) \cdot \tau_I (y)) |
| T I6 | (\tau_I (x \parallel y) = \tau_I (x) \parallel \tau_I (y)) |
| G28 | (\tau_{\varphi} \cdot x = x) |
| G29 | (x \cdot \tau_{\varphi} = x) |
| G30 | (x \parallel \tau_{\varphi} = x) |
| G31 | (\varphi \notin I) 时,(\tau_I (\varphi) = \varphi) |
| G32 | (\varphi \in I) 时,(\tau_
超级会员免费看
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



