问题由来
这个问题来自于CS231n Assignment1 Q1 inlineQuestion 2 ,原问题描述如下
We can also use other distance metrics such as L1 distance.
For pixel values pij(k)p_{ij}^{(k)}pij(k) at location (i,j)(i,j)(i,j) of some image IkI_kIk,
the mean μ\muμ across all pixels over all images is μ=1nhw∑k=1n∑i=1h∑j=1wpij(k)\mu=\frac{1}{nhw}\sum_{k=1}^n\sum_{i=1}^{h}\sum_{j=1}^{w}p_{ij}^{(k)}μ=nhw1k=1∑ni=1∑hj=1∑wpij(k)
And the pixel-wise mean μij\mu_{ij}μij across all images is
μij=1n∑k=1npij(k).\mu_{ij}=\frac{1}{n}\sum_{k=1}^np_{ij}^{(k)}.μij=n1k=1∑npij(k).
The general standard deviation σ\sigmaσ and pixel-wise standard deviation σij\sigma_{ij}σij is defined similarly.
Which of the following preprocessing steps will not change the performance of a Nearest Neighbor classifier that uses L1 distance? Select all that apply.
- Subtracting the mean μ\muμ (p~ij(k)=pij(k)−μ\tilde{p}_{ij}^{(k)}=p_{ij}^{(k)}-\mup~ij(k)=pij(k)−μ.)
- Subtracting the per pixel mean μij\mu_{ij}μij (p~ij(k)=pij(k)−μij\tilde{p}_{ij}^{(k)}=p_{ij}^{(k)}-\mu_{ij}p~ij(k)=pij(k)−μij.)
- Subtracting the mean μ\muμ and dividing by the standard deviation σ\sigmaσ.
- Subtracting the pixel-wise mean μij\mu_{ij}μij and dividing by the pixel-wise standard deviation σij\sigma_{ij}σij.
- Rotating the coordinate axes of the data.
我的思路是这样的:
使用L1 distance,P1=(x1,x2)P_1 = (x_1,x_2)P1=(x1,x

本文探讨了不同数据预处理步骤如何影响使用L1距离的最近邻分类器的性能。通过分析减去均值、减去像素均值、除以标准差、像素级标准化和坐标轴旋转等操作,得出结论:平移和归一化操作不会显著改变性能,而坐标旋转会导致性能变化。
最低0.47元/天 解锁文章
613

被折叠的 条评论
为什么被折叠?



