《算法竞赛进阶指南》0x00倍增

本文档介绍了三篇关于区间最大值计算的C++代码,涉及数组操作、数据结构和动态规划。第一篇是普通数列,第二篇是固定大小区间内的最小值求解,第三篇则同时考虑最大值和最小值。主要讲解了如何使用递归和分治法计算子区间内的最优值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数列区间最大值
#include <bits/stdc++.h>
using namespace std;

const int N = 1e5 + 10;
int n, m, a[N];
int f[N][20];		//f[i][j]:a[i]...a[i + 2^j - 1]范围里的最小值 

int main() {
	scanf("%d%d", &n, &m);
	for (int i = 1; i <= n; i ++) {
		scanf("%d", &a[i]);
		f[i][0] = a[i];
	}

	int t = log2(n);
	for (int j = 1; j <= t; j ++) {
		for (int i = 1; i + (1 << j) - 1 <= n; i ++) {
			int k = j - 1;
			f[i][j] = max(f[i][k], f[i + (1 << k)][k]);
		}
	}
	
	while (m --) {
		int x, y;
		scanf("%d%d", &x, &y);
		int k = log2(y - x + 1);
		int maxx = max(f[x][k], f[y + 1 - (1 << k)][k]);
		printf("%d\n", maxx);
	}
	
	return 0;
}
天才的记忆
#include <bits/stdc++.h>
using namespace std;

const int N = 2e5 + 10;
int n, m, a[N];
int f[N][20];		//f[i][j]:a[i]...a[i + 2^j - 1]范围里的最小值 

int main() {
	scanf("%d", &n);
	for (int i = 1; i <= n; i ++) {
		scanf("%d", &a[i]);
		f[i][0] = a[i];
	}
	
	int t = log2(n);
	for (int j = 1; j <= t; j ++) {
		for (int i = 1; i + (1 << j) - 1 <= n; i ++) {
			int k = j - 1;
			f[i][j] = max(f[i][k], f[i + (1 << k)][k]);
		}
	}
	
	scanf("%d", &m);
	while (m --) {
		int x, y;
		scanf("%d%d", &x, &y);
		int k = log2(y - x + 1);
		int maxx = max(f[x][k], f[y + 1 - (1 << k)][k]);
		printf("%d\n", maxx);
	}
	
	return 0;
}
最敏捷的机器人
#include <bits/stdc++.h>
using namespace std;

const int N = 1e5 + 10;
int n, m, a[N];
int f[N][20];		//f[i][j]:a[i]...a[i + 2^j - 1]范围里的最大值 
int g[N][20];		//g[i][j]:a[i]...a[i + 2^j - 1]范围里的最小值 

int main() {
	scanf("%d%d", &n, &m);
	for (int i = 1; i <= n; i ++) {
		scanf("%d", &a[i]);
		f[i][0] = a[i];
		g[i][0] = a[i];
	}
	
	int t = log2(n);
	for (int j = 1; j <= t; j ++) {
		for (int i = 1; i + (1 << j) - 1 <= n; i ++) {
			f[i][j] = max(f[i][j - 1], f[i + (1 << j - 1)][j - 1]);
			g[i][j] = min(g[i][j - 1], g[i + (1 << j - 1)][j - 1]);
		}
	}
	
	for (int i = 1; i <= n - m + 1; i ++) {
		//1 ~ m, 2 ~ m + 1,..., i ~ m + i - 1
		//(m + i - 1) - 1 << k + 1
		//
		int k = log2(m);
		int maxx = max(f[i][k], f[m + i - (1 << k)][k]);
		int minn = min(g[i][k], g[m + i - (1 << k)][k]);
		printf("%d %d\n", maxx, minn);
	}
	
	return 0;
}
Balanced Lineup
#include <bits/stdc++.h>
using namespace std;

const int N = 5e4 + 10;
int n, Q, x;
int f[N][20], g[N][20];	//最矮,最高 

int main() {
	scanf("%d%d", &n, &Q);
	for (int i = 1; i <= n; i ++) {
		scanf("%d", &x);
		f[i][0] = g[i][0] = x;
	}
	
	int t = log2(n);
	for (int j = 1; j <= t; j ++) {
		for (int i = 1; i + (1 << j) - 1 <= n; i ++) {
			int k = j - 1;
			f[i][j] = min(f[i][k], f[i + (1 << k)][k]);
			g[i][j] = max(g[i][k], g[i + (1 << k)][k]);
		}
	}
	
	while (Q --) {
		int a, b;
		scanf("%d%d", &a, &b);
		int k = log2(b - a + 1);
		int minn = min(f[a][k], f[b + 1 - (1 << k)][k]);
		int maxx = max(g[a][k], g[b + 1 - (1 << k)][k]);
		printf("%d\n", maxx - minn);
	}

	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值