Description
Bessie has gone to the mall’s jewelry store and spies a charm bracelet. Of course, she’d like to fill it with the best charms possible from the N (1 ≤ N ≤ 3,402) available charms. Each charm i in the supplied list has a weight Wi (1 ≤ Wi ≤ 400), a ‘desirability’ factor Di (1 ≤ Di ≤ 100), and can be used at most once. Bessie can only support a charm bracelet whose weight is no more than M (1 ≤ M ≤ 12,880).
Given that weight limit as a constraint and a list of the charms with their weights and desirability rating, deduce the maximum possible sum of ratings.
Input
- Line 1: Two space-separated integers: N and M
- Lines 2..N+1: Line i+1 describes charm i with two space-separated integers: Wi and Di
Output
- Line 1: A single integer that is the greatest sum of charm desirabilities that can be achieved given the weight constraints
Sample Input
4 6
1 4
2 6
3 12
2 7Sample Output
23
Source
USACO 2007 December Silver
简单背包,但是…数据范围二维数组开不起,所以要用一维数组。
#include <iostream>
#include <cstdio>
using namespace std;
struct DC
{
int w, d;
}p[3450];
int dp[13300];
int main()
{
int n, m;
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; i++)
scanf("%d%d", &p[i].w, &p[i].d);
for(int i = 1; i <= n; i++)
for(int j = m; j >= p[i].w; j--)
dp[j] = max(dp[j - p[i].w] + p[i].d, dp[j]);
cout<<dp[m];
return 0;
}
本文介绍了一个简单的背包问题实例,通过一维数组实现最优解的计算。该问题要求在给定重量限制下,从一系列具有不同权重和吸引力的装饰品中选择最佳组合,以最大化总吸引力。文章提供了一段C++代码示例,展示了如何使用动态规划解决此类问题。
2274

被折叠的 条评论
为什么被折叠?



