Bayes定理与应用

找了几篇文章。
http://www.ruanyifeng.com/blog/2011/08/bayesian_inference_part_one.html
http://www.ruanyifeng.com/blog/2011/08/bayesian_inference_part_two.html
https://www.zhihu.com/question/19725590    ## 这个用频率举例,容易理解
http://norvig.com/spell-correct.html    ## 一个简易的拼写检查Python版本

P(A|B) = P(B|A)*P(A) / P(B)

例子-01
看了这么多答案,怎么没有人提 平行宇宙 解释。我忘记是不是在《黑客与画家》中看到的了。容我在此复述一下。
假设有1000个平行宇宙,这些宇宙中时间同步前进。
这一天,管理员小王天起床,走到车间。此时有750个宇宙,这机器都是好的。而另有250个宇宙,机器是坏的。
但是在所有的宇宙中,小王都忘记检查机器了(100%忘记检查的 人物设定),然后机器开工,生产了一个产品。
我们看这750个良好机器的宇宙中,有90%的宇宙,也就是675个宇宙,都产生了好产品,而75个宇宙,生产了坏的产品。
我们再看这250个故障机器的宇宙中,有30%的宇宙,也就是75个宇宙生产了好产品,有175个宇宙生产了坏产品。
在那些生产了好产品的宇宙中,小王此时才想起来检查机器。生产好产品的宇宙一共有675+75 = 750 个宇宙,其中675 个宇宙是良好机器的宇宙,另外75 个宇宙是故障机器的宇宙。

问,此时(生产了好产品时)发现故障机器的概率?
岂不是太简单。
75/750 = 0.1

例子-02
作者:罗朝辉
链接:https://www.zhihu.com/question/19725590/answer/32275564
来源:知乎
著作权归作者所有,转载请联系作者获得授权。

示例示例一:应当根据新情况更新先验概率

决策与判断》第十二章中讲到人们都有保守主义情结,即使出现了新信息,也不愿意根据新信息来更新先验概率。用前面解释里面的话说就是:新信息是 B 事件不断发生,人们本应该根据这个信息去更新 A 事件发生的概率,但人们却更愿意固守之前估计的 A 事件发生的概率。


书中举了这样一个调查案例:

假设有两个各装了100个球的箱子,甲箱子中有70个红球,30个绿球,乙箱子中有30个红球,70个绿球。假设随机选择其中一个箱子,从中拿出一个球记下球色再放回原箱子,如此重复12次,记录得到8次红球,4次绿球。问题来了,你认为被选择的箱子是甲箱子的概率有多大?

调查结果显示,大部分人都低估了选择的是甲箱子的概率。根据贝叶斯定理,正确答案是96.7%。下面容我来详细分析解答。


刚开始选择甲乙两箱子的先验概率都是50%,因为是随机二选一(这是贝叶斯定理二选一的特殊形式)。即有:

P(甲) = 0.5, P(乙) = 1 - P(甲);

这时在拿出一个球是红球的情况下,我们就应该根据这个信息来更新选择的是甲箱子的先验概率:

P(甲|红球1) = P(红球|甲) × P(甲) / (P(红球|甲) × P(甲) + (P(红球|乙) × P(乙)))
P(红球|甲):甲箱子中拿到红球的概率
P(红球|乙):乙箱子中拿到红球的概率

因此在出现一个红球的情况下,选择的是甲箱子的先验概率就可被修正为:

P(甲|红球1) = 0.7 × 0.5 / (0.7 × 0.5 + 0.3 × 0.5) = 0.7

即在出现一个红球之后,甲乙箱子被选中的先验概率就被修正为:

P(甲) = 0.7, P(乙) = 1 - P(甲) = 0.3;

如此重复,直到经历8次红球修正(概率增加),4此绿球修正(概率减少)之后,选择的是甲箱子的概率为:96.7%。

从程序运行结果来看,很明显可以看到红球的出现是增加选择甲箱子的概率,而绿球则相反。

【评估多目标跟踪方法】9个高度敏捷目标在编队中的轨迹和测量研究(Matlab代码实现)内容概要:本文围绕“评估多目标跟踪方法”,重点研究9个高度敏捷目标在编队飞行中的轨迹生成测量过程,并提供完整的Matlab代码实现。文中详细模拟了目标的动态行为、运动约束及编队结构,通过仿真获取目标的状态信息观测数据,用于验证和比较不同多目标跟踪算法的性能。研究内容涵盖轨迹建模、噪声处理、传感器测量模拟以及数据可视化等关键技术环节,旨在为雷达、无人机编队、自动驾驶等领域的多目标跟踪系统提供可复现的测试基准。; 适合人群:具备一定Matlab编程基础,从事控制工程、自动化、航空航天、智能交通或人工智能等相关领域的研究生、科研人员及工程技术人员。; 使用场景及目标:①用于多目标跟踪算法(如卡尔曼滤波、粒子滤波、GM-CPHD等)的性能评估对比实验;②作为无人机编队、空中交通监控等应用场景下的轨迹仿真传感器数据分析的教学研究平台;③支持对高度机动目标在复杂编队下的可观测性跟踪精度进行深入分析。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注轨迹生成逻辑测量模型构建部分,可通过修改目标数量、运动参数或噪声水平来拓展实验场景,进一步提升对多目标跟踪系统设计评估的理解。
本软件实现了一种基于时域有限差分法结合时间反转算法的微波成像技术,旨在应用于乳腺癌的早期筛查。其核心流程分为三个主要步骤:数据采集、信号处理三维可视化。 首先,用户需分别执行“WithTumor.m”“WithoutTumor.m”两个脚本。这两个程序将在模拟生成的三维生物组织环境中进行电磁仿真,分别采集包含肿瘤模型不包含肿瘤模型的场景下的原始场数据。所获取的数据将自动存储为“withtumor.mat”“withouttumor.mat”两个数据文件。 随后,运行主算法脚本“TR.m”。该程序将加载上述两组数据,并实施时间反转算法。算法的具体过程是:提取两组仿真信号之间的差异成分,通过一组专门设计的数字滤波器对差异信号进行增强净化处理,随后在数值模拟的同一组织环境中进行时间反向的电磁波传播计算。 在算法迭代计算过程中,系统会按预设的周期(每n次迭代)自动生成并显示三维模拟空间内特定二维切面的电场强度分布图。通过对比观察这些动态更新的二维场分布图像,用户有望直观地识别出由肿瘤组织引起的异常电磁散射特征,从而实现病灶的视觉定位。 关于软件的具体配置要求、参数设置方法以及更深入的技术细节,请参阅软件包内附的说明文档。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值