tensorflow_cookbook:Ch 1: Getting Started with TensorFlow_(7)Data Source Information

本文介绍了多种常用数据集的获取方式及其基本信息,包括鸢尾花数据集、低体重出生数据、房价数据、手写数字数据集MNIST、短信垃圾数据等,并提供了Python代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

7. Data Source Information

Here are the sources of the data sets used in this book. The following links are the original sources with explanations and citations. The script in this directory demonstrates how to access these data sets.

Iris Data
Low Birthweight Data
Housing Price Data
MNIST Dataset of Handwritten Digits
SMS Spam Data
Movie Review Data
William Shakespeare Data
German-English Sentence Data

# 07_data_gathering.py
# Data gathering
#----------------------------------
#
# This function gives us the ways to access
# the various data sets we will need

# Data Gathering
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from tensorflow.python.framework import ops
ops.reset_default_graph()


# Iris Data
from sklearn import datasets

iris = datasets.load_iris()
print(len(iris.data))
print(len(iris.target))
print(iris.data[0])
print(set(iris.target))

# Low Birthrate Data
import requests

birthdata_url = 'https://www.umass.edu/statdata/statdata/data/lowbwt.dat'
birth_file = requests.get(birthdata_url)
birth_data = birth_file.text.split('\r\n')[5:]
birth_header = [x for x in birth_data[0].split(' ') if len(x)>=1]
birth_data = [[float(x) for x in y.split(' ') if len(x)>=1] for y in birth_data[1:] if len(y)>=1]
print(len(birth_data))
print(len(birth_data[0]))


# Housing Price Data
import requests

housing_url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data'
housing_header = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV']
housing_file = requests.get(housing_url)
housing_data = [[float(x) for x in y.split(' ') if len(x)>=1] for y in housing_file.text.split('\n') if len(y)>=1]
print(len(housing_data))
print(len(housing_data[0]))


# MNIST Handwriting Data
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
print(len(mnist.train.images))
print(len(mnist.test.images))
print(len(mnist.validation.images))
print(mnist.train.labels[1,:])


# Ham/Spam Text Data
import requests
import io
from zipfile import ZipFile

# Get/read zip file
zip_url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/00228/smsspamcollection.zip'
r = requests.get(zip_url)
z = ZipFile(io.BytesIO(r.content))
file = z.read('SMSSpamCollection')
# Format Data
text_data = file.decode()
text_data = text_data.encode('ascii',errors='ignore')
text_data = text_data.decode().split('\n')
text_data = [x.split('\t') for x in text_data if len(x)>=1]
[text_data_target, text_data_train] = [list(x) for x in zip(*text_data)]
print(len(text_data_train))
print(set(text_data_target))
print(text_data_train[1])


# Movie Review Data
import requests
import io
import tarfile

movie_data_url = 'http://www.cs.cornell.edu/people/pabo/movie-review-data/rt-polaritydata.tar.gz'
r = requests.get(movie_data_url)
# Stream data into temp object
stream_data = io.BytesIO(r.content)
tmp = io.BytesIO()
while True:
    s = stream_data.read(16384)
    if not s:  
        break
    tmp.write(s)
stream_data.close()
tmp.seek(0)
# Extract tar file
tar_file = tarfile.open(fileobj=tmp, mode="r:gz")
pos = tar_file.extractfile('rt-polaritydata/rt-polarity.pos')
neg = tar_file.extractfile('rt-polaritydata/rt-polarity.neg')
# Save pos/neg reviews
pos_data = []
for line in pos:
    pos_data.append(line.decode('ISO-8859-1').encode('ascii',errors='ignore').decode())
neg_data = []
for line in neg:
    neg_data.append(line.decode('ISO-8859-1').encode('ascii',errors='ignore').decode())
tar_file.close()

print(len(pos_data))
print(len(neg_data))
print(neg_data[0])


# The Works of Shakespeare Data
import requests

shakespeare_url = 'http://www.gutenberg.org/cache/epub/100/pg100.txt'
# Get Shakespeare text
response = requests.get(shakespeare_url)
shakespeare_file = response.content
# Decode binary into string
shakespeare_text = shakespeare_file.decode('utf-8')
# Drop first few descriptive paragraphs.
shakespeare_text = shakespeare_text[7675:]
print(len(shakespeare_text))


# English-German Sentence Translation Data
import requests
import io
from zipfile import ZipFile
sentence_url = 'http://www.manythings.org/anki/deu-eng.zip'
r = requests.get(sentence_url)
z = ZipFile(io.BytesIO(r.content))
file = z.read('deu.txt')
# Format Data
eng_ger_data = file.decode()
eng_ger_data = eng_ger_data.encode('ascii',errors='ignore')
eng_ger_data = eng_ger_data.decode().split('\n')
eng_ger_data = [x.split('\t') for x in eng_ger_data if len(x)>=1]
[english_sentence, german_sentence] = [list(x) for x in zip(*eng_ger_data)]
print(len(english_sentence))
print(len(german_sentence))
print(eng_ger_data[10])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值