[Python标准库]decimal——定点数和浮点数的数学运算

本文介绍Python的decimal模块,用于定点数和浮点数的精确运算。文章涵盖decimal的基本使用、算术运算、特殊值处理、上下文配置等内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[Python标准库]decimal——定点数和浮点数的数学运算
        作用:使用定点数和浮点数的小数运算。
        Python 版本:2.4 及以后版本
        decimal 模块实现了定点和浮点算术运算符,使用的是大多数人所熟悉的模型,而不是程序员熟悉的模型,即大多数计算机硬件实现的 IEEE 浮点数运算。Decimal 实例可以准确地表示任何数,对其上取整或下取整,还可以对有效数字个数加以限制。
Decimal
        小数值表示为 Decimal 类的实例。构造函数取一个整数或字符串作为参数。使用浮点数创建 Decimal 之前,可以先将浮点数转换为一个字符串,使调用者能够显式地处理值得位数,倘若使用硬件浮点数表示则无法准确地表述。另外,利用类方法 from_float() 可以转换为精确的小数表示。
import decimal

fmt = '{0:<25} {1:<25}'
print fmt.format('Input', 'Output')
print fmt.format('-' * 25, '-' * 25)

# Integer
print fmt.format(5, decimal.Decimal(5))

# String
print fmt.format('3.14', decimal.Decimal('3.14'))

# Float
f = 0.1
print fmt.format(repr(f), decimal.Decimal(str(f)))
print fmt.format('%.23g' % f, str(decimal.Decimal.from_float(f))[:25])
        浮点数值 0.1 并不表示为一个精确的二进制值,所以 float 的表示与 Decimal 值不同。在这个输出中它被截断为 25 个字符。
        Decimal 还可以由元组创建,其中包含一个符号标志(0 表示正,1 表示负)、数字 tuple 以及一个整数指数。
import decimal

# Tuple
t = (1, (1, 1), -2)
print 'Input  :', t
print 'Decimal:', decimal.Decimal(t)
        基于元组的表示创建时不太方便,不过它提供了一种可移植的方式,可以导出小数值而不会损失精度。tuple 形式可以在网络上传输,或者在不支持精确小数值得数据库中存储,以后再转回回 Decimal 实例。
算术运算
        Decimal 重载了简单的算术运算符,所以可以采用内置数值类型同样的方式处理 Decimal 实例。
import decimal

a = decimal.Decimal('5.1')
b = decimal.Decimal('3.14')
c = 4
d = 3.14

print 'a     =', repr(a)
print 'b     =', repr(b)
print 'c     =', repr(c)
print 'd     =', repr(d)
print

print 'a + b =', a + b
print 'a - b =', a - b
print 'a * b =', a * b
print 'a / b =', a / b
print

print 'a + c =', a + c
print 'a - c =', a - c
print 'a * c =', a * c
print 'a / c =', a / c
print

print 'a + d =',
try:
    print a + d
except TypeError, e:
    print e
        Decimal 运算符还接受整数参数,不过浮点数值必须转换为 Decimal 实例。
        除了基本算术运算,Decimal 还包括一些方法来查找以 10 为底的对数和自然对数。log10() 和 ln() 返回的值都是 Decimal 实例,所以可以与其他值一样直接在公式中使用。
特殊值
        除了期望的数字值,Decimal 还可以表示很多特殊值,包括正负无穷大值、“不是一个数”(NaN)和 0。
import decimal

for value in [ 'Infinity', 'NaN', '0' ]:
    print decimal.Decimal(value), decimal.Decimal('-' + value)
print

# Math with infinity
print 'Infinity + 1:', (decimal.Decimal('Infinity') + 1)
print '-Infinity + 1:', (decimal.Decimal('-Infinity') + 1)

# Print comparing NaN
print decimal.Decimal('NaN') == decimal.Decimal('Infinity')
print decimal.Decimal('NaN') != decimal.Decimal(1)
        与无穷大值相加会返回另一个无穷大值。与 NaN 比较相等性总会返回 false,而比较不等性总会返回 true。与 NaN 比较大小来确定排序顺序没有明确定义,这会导致一个错误。
上下文
        到目前为止,前面的例子使用的都是 decimal 模块的默认行为。还可以使用一个上下文(context)覆盖某些设置,如保持精度、如何完成取整、错误处理等等。上下文可以应用于一个线程中的所有 Decimal 实例,或者局部应用于一个小代码区。
        1. 当前上下文
        要获取当前全局上下文,可以使用 getcontext()。
import decimal
import pprint

context = decimal.getcontext()

print 'Emax     =', context.Emax
print 'Emin     =', context.Emin
print 'capitals =', context.capitals
print 'prec     =', context.prec
print 'rounding =', context.rounding
print 'flags    ='
pprint.pprint(context.flags)
print 'traps    ='
pprint.pprint(context.traps)
        这个示例脚本显示了 Context 的公共属性。
        2. 精度
        上下文的 prec 属性控制着作为算术运算结果所创建的新值的精度。字面量值会按这个属性保持精度。
import decimal

d = decimal.Decimal('0.123456')
for i in range(4):
    decimal.getcontext().prec = i
    print i, ':', d, d * 1
        要改变精度,可以直接为这个属性赋一个新值。
        3. 取整

        取整有多种选择,以保证值在所需精度范围内。
  • ROUND_CEILING 总是趋向于无穷大向上取整。
  • ROUND_DOWN 总是趋向 0 取整。
  • ROUND_FLOOR 总是趋向负无穷大向下取整。
  • ROUND_HALF_DOWN 如果最后一个有效数字大于或等于 5 则朝 0 反方向取整;否则,趋向 0 取整。
  • ROUND_HALF_EVEN 类似于 ROUND_HALF_DOWN,不过,如果最后一个有效数字值为 5,则会检查前一位。偶数值会导致结果向下取整,奇数值导致结果向上取整。
  • ROUND_HALF_UP 类似于 ROUND_HALF_DOWN,不过如果最后一位有效数字为 5,值会朝 0 的反方向取整。
  • ROUND_UP 朝 0 的反方向取整。
  • ROUND_05UP 如果最后一位是 0 或 5,则朝 0 的反方向取整;否则向 0 取整。
import decimal

context = decimal.getcontext()

ROUNDING_MODES = [
    'ROUND_CEILING',
    'ROUND_DOWN',
    'ROUND_FLOOR',
    'ROUND_HALF_DOWN',
    'ROUND_HALF_EVEN',
    'ROUND_HALF_UP',
    'ROUND_UP',
    'ROUND_05UP',
    ]
header_fmt = '{:10} ' + ' '.join(['{:^8}'] * 6)
print header_fmt.format(' ',
                        '1/8 (1)', '-1/8 (1)',
                        '1/8 (2)', '-1/8 (2)',
                        '1/8 (3)', '-1/8 (3)',
                        )
for rounding_mode in ROUNDING_MODES:
    print '{0:10}'.format(rounding_mode.partition('_')[-1]),
    for precision in [ 1, 2, 3 ]:
        context.prec = precision
        context.rounding = getattr(decimal, rounding_mode)
        value = decimal.Decimal(1) / decimal.Decimal(8)
        print '{0:^8}'.format(value),
        value = decimal.Decimal(-1) / decimal.Decimal(8)
        print '{0:^8}'.format(value),
    print
        这个程序显示了使用不同算法将同一个值取整为不同精度的效果。
        4. 局部上下文
        使用 Python 2.5 或以后版本时,可以使用 with 语句对一个代码块应用上下文。
import decimal

with decimal.localcontext() as c:
    c.prec = 2
    print 'Local precision:', c.prec
    print '3.14 / 3 =', (decimal.Decimal('3.14') / 3)
print
print 'Default precision:', decimal.getcontext().prec
print '3.14 / 3 =', (decimal.Decimal('3.14') / 3)
        Context 支持 with 使用的上下文管理器 API,所以这个设置只在块内应用。
        5. 各实例上下文
        上下文还可以用来构造 Decimal 实例,然后可以从这个上下文继承精度和转换的取整参数。
import decimal

# Set up a context with limited precision
c = decimal.getcontext().copy()
c.prec = 3

# Create our constant
pi = c.create_decimal('3.1415')

# The constant value is rounded off
print 'PI    :', pi

# The result of using the constant uses the global context
print 'RESULT:', decimal.Decimal('2.01') * pi
        这样一来,应用就可以区别于用户数据精度而另外选择常量值精度。
        6. 线程
        “全局”上下文实际上是线程本地上下文,所以完全可以使用不同的值分别配置各个线程。
import decimal
import threading
from Queue import PriorityQueue

class Multiplier(threading.Thread):
    def __init__(self, a, b, prec, q):
        self.a = a
        self.b = b
        self.prec = prec
        self.q = q
        threading.Thread.__init__(self)
    def run(self):
        c = decimal.getcontext().copy()
        c.prec = self.prec
        decimal.setcontext(c)
        self.q.put( (self.prec, a * b) )
        return

a = decimal.Decimal('3.14')
b = decimal.Decimal('1.234')
# A PriorityQueue will return values sorted by precision, no matter
# what order the threads finish.
q = PriorityQueue()
threads = [ Multiplier(a, b, i, q) for i in range(1, 6) ]
for t in threads:
    t.start()

for t in threads:
    t.join()

for i in range(5):
    prec, value = q.get()
    print prec, '\t', value
        这个例子使用指定的值创建一个新的上下文,然后安装到各个线程中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值