JAVA线程池ThreadPoolExecutor

本文深入探讨Java线程池的基础概念、配置参数及其作用机制,包括核心线程数、最大线程数、任务队列、拒绝策略等,并通过示例代码展示如何创建和使用线程池。

java.util.concurrent.ThreadPoolExecutor相关基础介绍和使用示例。 
[ 一 ]、常用线程池 
最常用构造方法为: 

Java代码    收藏代码
  1. ThreadPoolExecutor(int corePoolSize,  
  2.                    int maximumPoolSize,  
  3.                    long keepAliveTime,  
  4.                    TimeUnit unit,  
  5.                    BlockingQueue<Runnable> workQueue,  
  6.                    RejectedExecutionHandler handler)  



JDK自带的配置好的线程池: 

Java代码    收藏代码
  1. // 固定工作线程数量的线程池  
  2. ExecutorService executorService1 = Executors.newFixedThreadPool(3);  
  3.   
  4. // 一个可缓存的线程池  
  5. ExecutorService executorService2 = Executors.newCachedThreadPool();  
  6.   
  7. // 单线程化的Executor  
  8. ExecutorService executorService3 = Executors.newSingleThreadExecutor();  
  9.   
  10. // 支持定时的以及周期性的任务执行  
  11. ExecutorService executorService4 = Executors.newScheduledThreadPool(3);  


这些预定义好的线程池服务也是基于ThreadPoolExecutor配置的,所以我们应该从最基本的参数着手了解,如下: 

参数详细说明: 
[ 1 ]、corePoolSize: 线程池维护线程的最少数量 
[ 2 ]、maximumPoolSize:线程池维护线程的最大数量 
[ 3 ]、keepAliveTime: 线程池维护线程所允许的空闲时间 
[ 4 ]、unit: 线程池维护线程所允许的空闲时间的单位,unit可选的参数为java.util.concurrent.TimeUnit中的几个静态属性: 

  • NANOSECONDS
  • MICROSECONDS
  • MILLISECONDS
  • SECONDS

[ 5]、workQueue: 线程池所使用的缓冲队列,常用的是:java.util.concurrent.ArrayBlockingQueue 
[ 6 ]、handler: 线程池对拒绝任务的处理策略,有四个选择如下: 

  • ThreadPoolExecutor.AbortPolicy():抛出java.util.concurrent.RejectedExecutionException异常
  • ThreadPoolExecutor.CallerRunsPolicy():重试添加当前的任务,他会自动重复调用execute()方法
  • ThreadPoolExecutor.DiscardOldestPolicy():抛弃旧的任务
  • ThreadPoolExecutor.DiscardPolicy():抛弃当前的任务

[ 二 ]、详细说明 
[ 1 ]、当一个任务通过execute(Runnable)方法欲添加到线程池时: 

  • 如果此时线程池中的数量小于corePoolSize,即使线程池中的线程都处于空闲状态,也要创建新的线程来处理被添加的任务。
  • 如果此时线程池中的数量等于 corePoolSize,但是缓冲队列 workQueue未满,那么任务被放入缓冲队列。
  • 如果此时线程池中的数量大于corePoolSize,缓冲队列workQueue满,并且线程池中的数量小于maximumPoolSize,建新的线程来处理被添加的任务。
  • 如果此时线程池中的数量大于corePoolSize,缓冲队列workQueue满,并且线程池中的数量等于maximumPoolSize,那么通过 handler所指定的策略来处理此任务。也就是:处理任务的优先级为:核心线程corePoolSize、任务队列workQueue、最大线程maximumPoolSize,如果三者都满了,使用handler处理被拒绝的任务。
  • 当线程池中的线程数量大于 corePoolSize时,如果某线程空闲时间超过keepAliveTime,线程将被终止。这样,线程池可以动态的调整池中的线程数。

[ 2 ]、核心和最大池大小 
ThreadPoolExecutor 将根据 corePoolSize(参见 getCorePoolSize())和 maximumPoolSize(参见 getMaximumPoolSize())设置的边界自动调整池大小。当新任务在方法 execute(java.lang.Runnable) 中提交时,如果运行的线程少于 corePoolSize,则创建新线程来处理请求,即使其他辅助线程是空闲的。如果运行的线程多于 corePoolSize 而少于 maximumPoolSize,则仅当队列满时才创建新线程。如果设置的 corePoolSize 和 maximumPoolSize 相同,则创建了固定大小的线程池。如果将 maximumPoolSize 设置为基本的无界值(如 Integer.MAX_VALUE),则允许池适应任意数量的并发任务。在大多数情况下,核心和最大池大小仅基于构造来设置,不过也可以使用 setCorePoolSize(int) 和 setMaximumPoolSize(int) 进行动态更改。 
[ 3 ]、排队及策略 
所有 BlockingQueue 都可用于传输和保持提交的任务。可以使用此队列与池大小进行交互: 

  • 如果运行的线程少于 corePoolSize,则 Executor 始终首选添加新的线程,而不进行排队。
  • 如果运行的线程等于或多于 corePoolSize,则 Executor 始终首选将请求加入队列,而不添加新的线程。
  • 如果无法将请求加入队列,则创建新的线程,除非创建此线程超出 maximumPoolSize,在这种情况下,任务将被拒绝。

排队有三种通用策略: 

  • 直接提交。工作队列的默认选项是 SynchronousQueue,它将任务直接提交给线程而不保持它们。在此,如果不存在可用于立即运行任务的线程,则试图把任务加入队列将失败,因此会构造一个新的线程。此策略可以避免在处理可能具有内部依赖性的请求集合时出现锁定。直接提交通常要求无界 maximumPoolSizes 以避免拒绝新提交的任务。当命令以超过队列所能处理的平均数连续到达时,此策略允许无界线程具有增长的可能性。
  • 无界队列。使用无界队列(例如,不具有预定义容量的 LinkedBlockingQueue)将导致在所有 corePoolSize 线程都忙的情况下将新任务加入队列。这样,创建的线程就不会超过 corePoolSize。(因此,maximumPoolSize 的值也就无效了。)当每个任务完全独立于其他任务,即任务执行互不影响时,适合于使用无界队列;例如,在 Web 页服务器中。这种排队可用于处理瞬态突发请求,当命令以超过队列所能处理的平均数连续到达时,此策略允许无界线程具有增长的可能性。
  • 有界队列。当使用有限的 maximumPoolSizes 时,有界队列(如 ArrayBlockingQueue)有助于防止资源耗尽,但是可能较难调整和控制。队列大小和最大池大小可能需要相互折衷:使用大型队列和小型池可以最大限度地降低 CPU 使用率、操作系统资源和上下文切换开销,但是可能导致人工降低吞吐量。如果任务频繁阻塞(例如,如果它们是 I/O 边界),则系统可能为超过您许可的更多线程安排时间。使用小型队列通常要求较大的池大小,CPU 使用率较高,但是可能遇到不可接受的调度开销,这样也会降低吞吐量。

[ 4 ]、拒绝任务的处理策略 (这个和参数handler设置相关) 
当 Executor 已经关闭,并且 Executor 将有限边界用于最大线程和工作队列容量,且已经饱和时,在方法 execute(java.lang.Runnable) 中提交的新任务将被拒绝。在以上两种情况下,execute 方法都将调用其 RejectedExecutionHandler 的 RejectedExecutionHandler.rejectedExecution(java.lang.Runnable, java.util.concurrent.ThreadPoolExecutor) 方法。下面提供了四种预定义的处理程序策略: 

  • 在默认的 ThreadPoolExecutor.AbortPolicy 中,处理程序遭到拒绝将抛出运行时 RejectedExecutionException。
  • 在 ThreadPoolExecutor.CallerRunsPolicy 中,线程调用运行该任务的 execute 本身。此策略提供简单的反馈控制机制,能够减缓新任务的提交速度。
  • 在 ThreadPoolExecutor.DiscardPolicy 中,不能执行的任务将被删除。
  • 在 ThreadPoolExecutor.DiscardOldestPolicy 中,如果执行程序尚未关闭,则位于工作队列头部的任务将被删除,然后重试执行程序(如果再次失败,则重复此过程)。
  • 定义和使用其他种类的 RejectedExecutionHandler 类也是可能的,但这样做需要非常小心,尤其是当策略仅用于特定容量或排队策略时。


[ 三 ]、简单示例 
JavaThreadPool.java 

Java代码    收藏代码
  1. package michael.thread.pool;  
  2.   
  3. import java.util.Date;  
  4. import java.util.concurrent.ArrayBlockingQueue;  
  5. import java.util.concurrent.ThreadPoolExecutor;  
  6. import java.util.concurrent.TimeUnit;  
  7.   
  8.   
  9. /** 
  10.  * @see http://sjsky.iteye.com 
  11.  * @author michael sjsky007@gmail.com 
  12.  */  
  13. public class JavaThreadPool {  
  14.   
  15.     /** 
  16.      * @param args 
  17.      */  
  18.     public static void main(String[] args) {  
  19.   
  20.         ThreadPoolExecutor threadPool = new ThreadPoolExecutor(3560,  
  21.                 TimeUnit.SECONDS, new ArrayBlockingQueue<Runnable>(10),  
  22.                 new ThreadPoolExecutor.CallerRunsPolicy());  
  23.         for (int i = 0; i < 10; i++) {  
  24.             System.out.println("add job_" + i + " at:" + new Date());  
  25.             SimplePrintJob job = new SimplePrintJob("job_" + i);  
  26.             threadPool.execute(job);  
  27.         }  
  28.         System.out.println("execute all job");  
  29.         threadPool.shutdown();  
  30.         System.out.println("main program end-----------");  
  31.     }  
  32.   
  33. }  


SimplePrintJob.java 

Java代码    收藏代码
  1. package michael.thread.pool;  
  2.   
  3. import java.util.Random;  
  4.   
  5.   
  6. /** 
  7.  * @see http://sjsky.iteye.com 
  8.  * @author michael sjsky007@gmail.com 
  9.  */  
  10. public class SimplePrintJob implements Runnable {  
  11.   
  12.     private String jobName;  
  13.   
  14.     /** 
  15.      * @param jobName 
  16.      */  
  17.     public SimplePrintJob(String jobName) {  
  18.         this.jobName = jobName;  
  19.     }  
  20.   
  21.     /** 
  22.      * @see java.lang.Runnable#run() 
  23.      */  
  24.     public void run() {  
  25.         System.out.println("[ " + jobName + " ] start...");  
  26.         int random = 0;  
  27.         try {  
  28.             Random r = new Random();  
  29.             random = r.nextInt(10);  
  30.             Thread.sleep(random * 1000L);  
  31.         } catch (Exception e) {  
  32.             e.printStackTrace();  
  33.         }  
  34.         System.out.println("[ " + jobName + " ] end with sleep:" + random);  
  35.     }  
  36. }  


运行结果如下:

引用
add job_0 at:Sun Jun 19 00:52:02 CST 2011  
add job_1 at:Sun Jun 19 00:52:02 CST 2011  
add job_2 at:Sun Jun 19 00:52:02 CST 2011  
[ job_0 ] start...  
add job_3 at:Sun Jun 19 00:52:02 CST 2011  
add job_4 at:Sun Jun 19 00:52:02 CST 2011  
add job_5 at:Sun Jun 19 00:52:02 CST 2011  
add job_6 at:Sun Jun 19 00:52:02 CST 2011  
add job_7 at:Sun Jun 19 00:52:02 CST 2011  
add job_8 at:Sun Jun 19 00:52:02 CST 2011  
add job_9 at:Sun Jun 19 00:52:02 CST 2011  
execute all job  
[ job_2 ] start...  
[ job_0 ] end with sleep:0  
[ job_3 ] start...  
[ job_2 ] end with sleep:0  
[ job_4 ] start...  
main program end-----------  
[ job_1 ] start...  
[ job_4 ] end with sleep:1  
[ job_5 ] start...  
[ job_5 ] end with sleep:6  
[ job_6 ] start...  
[ job_1 ] end with sleep:7  
[ job_7 ] start...  
[ job_3 ] end with sleep:8  
[ job_8 ] start...  
[ job_6 ] end with sleep:4  
[ job_9 ] start...  
[ job_7 ] end with sleep:6  
[ job_8 ] end with sleep:7  
[ job_9 ] end with sleep:5  



我们可以自己更改 RejectedExecutionHandler handler这个参数,来观察运行结果会有什么不同。 


转载请注明来自:Michael's blog @ http://sjsky.iteye.com 

-----------------------------------分 ------------------------------------隔 ------------------------------------线 -------------------------------------- 

<think>我们刚刚讨论过Java线程池ExecutorService的全面内容,现在用户明确要求了解ThreadPoolExecutor的具体信息。从用户的问题和引用来看,需要聚焦ThreadPoolExecutor的使用方法、工作原理和应用场景。 用户提供的引用材料强调ThreadPoolExecutorJava线程池的核心实现,这点非常重要。引用[1]提到它管理预先创建的线程提高性能,引用[2]强调其配置选项和设计思想,引用[3]说明线程复用机制,引用[4]则指出其类继承关系。这些都需要整合到回答中。 考虑到用户可能是开发人员,我将从三个维度构建回答:使用方式会重点演示创建参数和任务提交,原理部分解析任务调度和线程复用机制,应用场景则结合不同业务需求。特别要注意引用[3]提到的任务队列选择和线程复用特性,这关系到实际性能表现。 在回答结构上,准备用三大部分展开:使用指南包含创建线程池的代码示例和工作流程说明;核心原理部分会解释状态管理和任务调度流程;应用场景则对比不同线程池类型。每个关键点都会自然标注引用来源,比如线程复用机制说明后添加[^3]。 最后会生成三个相关问题:钩子方法的使用、拒绝策略的深度解析、以及生产环境监控方案。这些问题既延续当前主题,又能帮助用户进阶学习。 </think>以下是关于 Java 线程池 `ThreadPoolExecutor` 的核心解析,涵盖使用、原理及应用场景: --- ### 一、使用指南 #### 1. 创建线程池(推荐手动配置) ```java ThreadPoolExecutor executor = new ThreadPoolExecutor( 4, // 核心线程数(常驻) 10, // 最大线程数 60, TimeUnit.SECONDS, // 非核心线程空闲存活时间 new ArrayBlockingQueue<>(100), // 有界任务队列 Executors.defaultThreadFactory(), // 线程工厂 new ThreadPoolExecutor.AbortPolicy() // 拒绝策略 ); ``` - **关键参数**: - **核心线程**:默认常驻,即使空闲也不回收 - **任务队列**:推荐有界队列(如 `ArrayBlockingQueue`)防 OOM - **拒绝策略**:默认 `AbortPolicy`(队列满时抛异常) #### 2. 提交任务 ```java // 无返回值任务 executor.execute(() -> System.out.println("Task running")); // 有返回值任务 Future<String> future = executor.submit(() -> { Thread.sleep(1000); return "Result"; }); String result = future.get(); // 阻塞获取结果 ``` #### 3. 关闭线程池 ```java executor.shutdown(); // 优雅关闭:停止接收新任务,处理完队列任务 if (!executor.awaitTermination(60, TimeUnit.SECONDS)) { executor.shutdownNow(); // 强制终止剩余任务 } ``` > **最佳实践**:`shutdown()` + `awaitTermination()` 组合确保安全关闭[^3] --- ### 二、核心原理 #### 1. 任务调度流程 1. 提交任务 → 优先使用核心线程执行 2. 核心线程满载 → 任务进入阻塞队列 3. 队列满载 → 创建非核心线程(不超过 `maxPoolSize`) 4. 线程和队列均满 → 触发拒绝策略[^1] #### 2. 线程复用机制 - **Worker 工作线程**: - 封装 `Thread` 和初始任务 `firstTask` - 循环执行 `getTask()` 从队列获取新任务 - **线程回收**: - 非核心线程空闲超过 `keepAliveTime` 后自动销毁 - 核心线程默认常驻(可通过 `allowCoreThreadTimeOut(true)` 配置回收) #### 3. 状态管理(原子变量 `ctl`) $$ \begin{array}{c|c} \text{高 3 位} & \text{低 29 位} \\ \hline \text{RUNNING} & \text{线程数} \\ \text{SHUTDOWN} & \\ \text{STOP} & \\ \text{TIDYING} & \\ \text{TERMINATED} & \\ \end{array} $$ > 状态转换:RUNNING → SHUTDOWN → TIDYING → TERMINATED[^4] --- ### 三、应用场景 | **场景类型** | **推荐配置** | **案例** | |---------------------|---------------------------------------|------------------------------| | **CPU 密集型** | 线程数 ≈ CPU 核数 | 数据加密、图像处理 | | **I/O 密集型** | 线程数 = CPU 核数 × (1 + 等待时间/计算时间) | 网络请求、文件读写[^2] | | **定时任务** | 使用 `ScheduledThreadPoolExecutor` | 定时报表、心跳检测 | | **高吞吐异步处理** | `CachedThreadPool` + 限流 | 消息队列消费(需防 OOM)[^3] | --- ### 四、调优与问题解决 1. **线程数公式**: $$ N_{\text{threads}} = N_{\text{CPU}} \times U_{\text{CPU}} \times (1 + \frac{W}{C}) $$ - $N_{\text{CPU}}$:CPU 核数(`Runtime.getRuntime().availableProcessors()`) - $U_{\text{CPU}}$:目标 CPU 利用率(建议 0.8) - $W/C$:等待时间与计算时间的比值 2. **常见问题**: - **任务堆积** → 使用有界队列 + `CallerRunsPolicy` 策略 - **线程泄露** → 通过 `ThreadFactory` 添加 `UncaughtExceptionHandler` - **CPU 过高** → 降低线程数或优化任务逻辑[^1] > **监控指标**: > ```java > executor.getActiveCount(); // 活动线程数 > executor.getQueue().size(); // 队列积压量 > executor.getCompletedTaskCount(); // 已完成任务 > ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值