[leetcode] 707. Design Linked List @ python

本文介绍了一种不使用内置链表库的手动实现链表的方法,包括节点的增删查改等基本操作。

原题

Design your implementation of the linked list. You can choose to use the singly linked list or the doubly linked list. A node in a singly linked list should have two attributes: val and next. val is the value of the current node, and next is a pointer/reference to the next node. If you want to use the doubly linked list, you will need one more attribute prev to indicate the previous node in the linked list. Assume all nodes in the linked list are 0-indexed.

Implement these functions in your linked list class:

get(index) : Get the value of the index-th node in the linked list. If the index is invalid, return -1.
addAtHead(val) : Add a node of value val before the first element of the linked list. After the insertion, the new node will be the first node of the linked list.
addAtTail(val) : Append a node of value val to the last element of the linked list.
addAtIndex(index, val) : Add a node of value val before the index-th node in the linked list. If index equals to the length of linked list, the node will be appended to the end of linked list. If index is greater than the length, the node will not be inserted.
deleteAtIndex(index) : Delete the index-th node in the linked list, if the index is valid.
Example:

MyLinkedList linkedList = new MyLinkedList();
linkedList.addAtHead(1);
linkedList.addAtTail(3);
linkedList.addAtIndex(1, 2); // linked list becomes 1->2->3
linkedList.get(1); // returns 2
linkedList.deleteAtIndex(1); // now the linked list is 1->3
linkedList.get(1); // returns 3
Note:

All values will be in the range of [1, 1000].
The number of operations will be in the range of [1, 1000].
Please do not use the built-in LinkedList library.

解法

构造链表Node, MyLinkedList的每一个元素是Node.

代码

class Node(object):
    def __init__(self, val):
        self.val = val
        self.next = None
        
class MyLinkedList(object):

    def __init__(self):
        """
        Initialize your data structure here.
        """
        self.head = None
        self.size = 0

    def get(self, index):
        """
        Get the value of the index-th node in the linked list. If the index is invalid, return -1.
        :type index: int
        :rtype: int
        """
        if index < 0 or index >= self.size or self.head == None:
            return -1
        
        cur = self.head
        for i in range(index):
            cur = cur.next
        return cur.val
        

    def addAtHead(self, val):
        """
        Add a node of value val before the first element of the linked list. After the insertion, the new node will be the first node of the linked list.
        :type val: int
        :rtype: None
        """
        node = Node(val)
        node.next = self.head
        self.head = node
        self.size += 1

    def addAtTail(self, val):
        """
        Append a node of value val to the last element of the linked list.
        :type val: int
        :rtype: None
        """
        cur = self.head
        if cur is None:
            cur = Node(val)
        else:
            while cur.next:
                cur = cur.next
            cur.next = Node(val)
        
        self.size += 1

    def addAtIndex(self, index, val):
        """
        Add a node of value val before the index-th node in the linked list. If index equals to the length of linked list, the node will be appended to the end of linked list. If index is greater than the length, the node will not be inserted.
        :type index: int
        :type val: int
        :rtype: None
        """
        if index < 0 or index > self.size:
            return
        if index == 0:
            self.addAtHead(val)
        else:
            cur = self.head
            for i in range(index-1):
                cur = cur.next
            node = Node(val)
            node.next = cur.next
            cur.next = node
            self.size += 1
        

    def deleteAtIndex(self, index):
        """
        Delete the index-th node in the linked list, if the index is valid.
        :type index: int
        :rtype: None
        """
        if index < 0 or index >= self.size:
            return
        cur = self.head
        if index == 0:
            self.head = cur.next
        else:
            for i in range(index-1):
                cur = cur.next
            cur.next = cur.next.next
        
        self.size -= 1
自适应链表是一种数据结构,它能够自动调整其内部节点的数量以优化存储效率,特别是在插入和删除操作频繁的情况下。传统的链表需要预先分配一定数量的节点,而自适应链表则动态地管理节点,当内存空间不足时添加新节点,当内存充足且连续时合并节点以减少空闲空间。 下面是一个简单的自适应链表(Adaptive Array List)的Python实现概述: ```python class Node: def __init__(self, value): self.value = value self.next = None self.prev = None class AdaptiveList: def __init__(self): self.head = None self.tail = None self.size = 0 self.capacity = 16 # 初始容量 def append(self, value): if not self.head: self.head = self.tail = Node(value) else: new_node = Node(value) self.tail.next = new_node new_node.prev = self.tail self.tail = new_node self.size += 1 if self.size > self.capacity * 2: # 当大小超过两倍容量时扩容 self.resize(2 * self.capacity) def resize(self, new_capacity): old_head = self.head self.head = self.tail = Node(None) # 创建新的头和尾 self.tail.next = old_head old_head.prev = self.tail for _ in range(self.size): current = old_head old_head = old_head.next self.append(current.value) # 将所有元素移动到新链表 # 使用示例 alist = AdaptiveList() alist.append(1) alist.append(2) ... ``` 在这个实现中,`append`方法会检查是否需要扩容。如果链表已满,就创建一个新的更大的链表,然后将原有链表的所有节点复制到新链表。这样,我们可以在保持高效的同时避免浪费内存。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值