[leetcode] 983. Minimum Cost For Tickets @ python

博客围绕火车旅行购票问题展开,给定旅行日期数组和三种不同时长车票价格,要求计算最小花费。采用动态规划方法,设dp[i]为到第i天的最少花费,若第i天不出行,dp[i] = dp[i - 1],并给出示例及代码思路。

原题

In a country popular for train travel, you have planned some train travelling one year in advance. The days of the year that you will travel is given as an array days. Each day is an integer from 1 to 365.

Train tickets are sold in 3 different ways:

a 1-day pass is sold for costs[0] dollars;
a 7-day pass is sold for costs[1] dollars;
a 30-day pass is sold for costs[2] dollars.
The passes allow that many days of consecutive travel. For example, if we get a 7-day pass on day 2, then we can travel for 7 days: day 2, 3, 4, 5, 6, 7, and 8.

Return the minimum number of dollars you need to travel every day in the given list of days.

Example 1:

Input: days = [1,4,6,7,8,20], costs = [2,7,15]
Output: 11
Explanation:
For example, here is one way to buy passes that lets you travel your travel plan:
On day 1, you bought a 1-day pass for costs[0] = $2, which covered day 1.
On day 3, you bought a 7-day pass for costs[1] = $7, which covered days 3, 4, …, 9.
On day 20, you bought a 1-day pass for costs[0] = $2, which covered day 20.
In total you spent $11 and covered all the days of your travel.
Example 2:

Input: days = [1,2,3,4,5,6,7,8,9,10,30,31], costs = [2,7,15]
Output: 17
Explanation:
For example, here is one way to buy passes that lets you travel your travel plan:
On day 1, you bought a 30-day pass for costs[2] = $15 which covered days 1, 2, …, 30.
On day 31, you bought a 1-day pass for costs[0] = $2 which covered day 31.
In total you spent $17 and covered all the days of your travel.

Note:

1 <= days.length <= 365
1 <= days[i] <= 365
days is in strictly increasing order.
costs.length == 3
1 <= costs[i] <= 1000

解法

动态规划, 设dp[i]为到第i天为止的最少花费. 初始化数组dp为0, 动态转移方程:

dp[i] = min(dp[i-1] + costs[0], dp[i-7] + costs[1], dp[i-30] + costs[2])

遍历数组dp, 如果第i天不在days里, 表示当天不出行, 那么dp[i] = dp[i-1]. 为防止index取负数, 这里使用max(i-1, 0)使得index的最小值为0.

代码

class Solution(object):
    def mincostTickets(self, days, costs):
        """
        :type days: List[int]
        :type costs: List[int]
        :rtype: int
        """
        # dp[i] represent the min cost at index i
        dp = [0]*(days[-1]+1)
        for i in range(1, len(dp)):
            if i not in days:
                dp[i] = dp[i-1]
                continue
                
            dp[i] = min(dp[max(0,i-1)] + costs[0], dp[max(0,i-7)] + costs[1], dp[max(0,i-30)] + costs[2])
            
        return dp[-1]
【无人机】基于改进粒子群算法的无人机路径规划研究[和遗传算法、粒子群算法进行比较](Matlab代码实现)内容概要:本文围绕基于改进粒子群算法的无人机路径规划展开研究,重点探讨了在复杂环境中利用改进粒子群算法(PSO)实现无人机三维路径规划的方法,并将其与遗传算法(GA)、标准粒子群算法等传统优化算法进行对比分析。研究内容涵盖路径规划的多目标优化、避障策略、航路点约束以及算法收敛性和寻优能力的评估,所有实验均通过Matlab代码实现,提供了完整的仿真验证流程。文章还提到了多种智能优化算法在无人机路径规划中的应用比较,突出了改进PSO在收敛速度和全局寻优方面的优势。; 适合人群:具备一定Matlab编程基础和优化算法知识的研究生、科研人员及从事无人机路径规划、智能优化算法研究的相关技术人员。; 使用场景及目标:①用于无人机在复杂地形或动态环境下的三维路径规划仿真研究;②比较不同智能优化算法(如PSO、GA、蚁群算法、RRT等)在路径规划中的性能差异;③为多目标优化问题提供算法选型和改进思路。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注算法的参数设置、适应度函数设计及路径约束处理方式,同时可参考文中提到的多种算法对比思路,拓展到其他智能优化算法的研究与改进中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值