@Autowired和@Resource的区别是什么?

本文对比了Spring框架中的@Autowired注解与JDK自带@Resource注解的区别与用法。详细解析了两者在依赖注入方面的不同特性,包括默认的装配方式、属性设置以及配合其他注解使用的场景。
@Autowired 与@Resource:
1、@Autowired与@Resource都可以用来装配bean. 都可以写在字段上,或写在setter方法上。

2、@Autowired默认按类型装配(这个注解是属业spring的),默认情况下必须要求依赖对象必须存在,如果要允许null值,可以设置它的required属性为false,如:
@Autowired(required=false) ,如果我们想使用名称装配可以结合@Qualifier注解进行使用,如下:
Java代码
@Autowired() @Qualifier("baseDao")    
private BaseDao baseDao;
3、@Resource 是JDK1.6支持的注解默认按照名称进行装配,名称可以通过name属性进行指定,如果没有指定name属性,当注解写在字段上时,默认取字段名,按照名称查找,如果注解写在setter方法上默认取属性名进行装配。当找不到与名称匹配的bean时才按照类型进行装配。但是需要注意的是,如果name属性一旦指定,就只会按照名称进行装配。


作者:wuxinliulei
链接:https://www.zhihu.com/question/39356740/answer/80926247
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
【无人机】基于改进粒子群算法的无人机路径规划研究[遗传算法、粒子群算法进行比较](Matlab代码实现)内容概要:本文围绕基于改进粒子群算法的无人机路径规划展开研究,重点探讨了在复杂环境中利用改进粒子群算法(PSO)实现无人机三维路径规划的方法,并将其与遗传算法(GA)、标准粒子群算法等传统优化算法进行对比分析。研究内容涵盖路径规划的多目标优化、避障策略、航路点约束以及算法收敛性寻优能力的评估,所有实验均通过Matlab代码实现,提供了完整的仿真验证流程。文章还提到了多种智能优化算法在无人机路径规划中的应用比较,突出了改进PSO在收敛速度全局寻优方面的优势。; 适合人群:具备一定Matlab编程基础优化算法知识的研究生、科研人员及从事无人机路径规划、智能优化算法研究的相关技术人员。; 使用场景及目标:①用于无人机在复杂地形或动态环境下的三维路径规划仿真研究;②比较不同智能优化算法(如PSO、GA、蚁群算法、RRT等)在路径规划中的性能差异;③为多目标优化问题提供算法选型改进思路。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注算法的参数设置、适应度函数设计及路径约束处理方式,同时可参考文中提到的多种算法对比思路,拓展到其他智能优化算法的研究与改进中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值