kmp

本文详细介绍了KMP算法的基本原理及其实现过程。通过具体的代码示例,展示了如何使用KMP算法进行高效的字符串匹配,并解释了关键部分如next数组的作用及计算方法。
#include<bits/stdc++.h>
using namespace std;

int next[100];
string father,son;

void getnext(){
    next[0]=-1;
    int j=0,k=-1;
    while(j<son.size()){
        if(k==-1||son[j]==son[k])next[++j]=++k;
        else k=next[k];
    }
}

int kmp(){
    getnext();
    int i=0,j=0;
    while(i<(int)father.size()&&j<(int)son.size()){//这里一定要将size()强转成int类型,不然就出错了
        if(j==-1||father[i]==son[j])i++,j++;
        else j=next[j];
    }
    if(j<(int)son.size())return -1;
    return i-j;
}
int main(){
    cin>>father>>son;
    cout<<kmp()<<endl;

    cout<<(0<father.size())<<endl;
    cout<<(-1<father.size())<<endl;//居然输出0,-1明明比father.size()小啊!
    cout<<(-1<(int)father.size());//size用int强转一下
}

分布式微服务企业级系统是一个基于Spring、SpringMVC、MyBatis和Dubbo等技术的分布式敏捷开发系统架构。该系统采用微服务架构和模块化设计,提供整套公共微服务模块,包括集中权限管理(支持单点登录)、内容管理、支付中心、用户管理(支持第三方登录)、微信平台、存储系统、配置中心、日志分析、任务和通知等功能。系统支持服务治理、监控和追踪,确保高可用性和可扩展性,适用于中小型企业的J2EE企业级开发解决方案。 该系统使用Java作为主要编程语言,结合Spring框架实现依赖注入和事务管理,SpringMVC处理Web请求,MyBatis进行数据持久化操作,Dubbo实现分布式服务调用。架构模式包括微服务架构、分布式系统架构和模块化架构,设计模式应用了单例模式、工厂模式和观察者模式,以提高代码复用性和系统稳定性。 应用场景广泛,可用于企业信息化管理、电子商务平台、社交应用开发等领域,帮助开发者快速构建高效、安全的分布式系统。本资源包含完整的源码和详细论文,适合计算机科学或软件工程专业的毕业设计参考,提供实践案例和技术文档,助力学生和开发者深入理解微服务架构和分布式系统实现。 【版权说明】源码来源于网络,遵循原项目开源协议。付费内容为本人原创论文,包含技术分析和实现思路。仅供学习交流使用。
10-19
### KMP算法详解 KMP(Knuth-Morris-Pratt)算法是一种高效的字符串匹配算法,用于在一个主串中快速找到模式串的位置。其核心思想在于通过预处理模式串构建部分匹配表(Partial Match Table, PMT),从而减少不必要的字符比较次数。 #### 部分匹配表的计算 部分匹配表记录了模式串前缀和后缀的最大重叠长度。具体来说,对于模式串 `P` 的每个位置 `i`,计算最长相等前后缀的长度并存入数组 `next[i]` 中[^1]。 以下是部分匹配表的构造方法: ```python def compute_next(pattern): n = len(pattern) next_array = [0] * n # 初始化 next 数组 j = 0 # 前缀指针 for i in range(1, n): # 后缀指针从第二个字符开始遍历 while j > 0 and pattern[j] != pattern[i]: j = next_array[j - 1] if pattern[j] == pattern[i]: j += 1 next_array[i] = j # 记录当前最大公共前后缀长度 return next_array ``` #### 字符串匹配过程 基于已构建的部分匹配表,可以高效完成字符串匹配操作。当遇到失配时,无需回退主串指针,而是依据部分匹配表调整模式串起始位置继续匹配。 下面是完整的 KMP 算法实现: ```python def kmp_search(text, pattern): m = len(text) n = len(pattern) next_array = compute_next(pattern) # 构建部分匹配表 matches = [] j = 0 # 模式串索引 for i in range(m): # 主串索引 while j > 0 and text[i] != pattern[j]: j = next_array[j - 1] if text[i] == pattern[j]: j += 1 if j == n: # 找到匹配子串 matches.append(i - n + 1) j = next_array[j - 1] # 继续寻找下一个可能的匹配 return matches ``` --- ### KMP算法在OFDM中的应用 正交频分复用(Orthogonal Frequency Division Multiplexing, OFDM)是一种广泛应用于现代通信系统的调制技术。它将信道划分为多个相互正交的子载波,在这些子载波上传输数据。为了提高传输效率和抗干扰能力,OFDM通常会引入同步机制以及训练序列来辅助接收端解码。 KMP算法可以在以下几个方面与OFDM相结合: #### 1. **训练序列检测** 在OFDM系统中,发送端会在帧头插入特定的训练序列以便于接收端进行同步和信道估计。由于训练序列具有固定的结构特征,因此可以通过KMP算法快速定位该序列在接收到的数据流中的位置[^2]。 例如,假设训练序列为 `"ABCD"`,而接收到的一段信号表示为一维采样值 `[..., A', B', C', D', ...]`,则可将其离散化后再运用KMP算法执行精确匹配。 #### 2. **符号边界识别** 除了训练序列外,某些标准还规定了特殊的标志位用来指示每一段有效负载的起点和终点。同样地,借助KMP算法能够迅速发现这些标记所在的具体时间戳,进而帮助解析后续的信息字段。 #### 3. **错误校验码验证** 一些高级纠错编码方案可能会附加冗余比特作为检错手段之一;如果采用固定形式的循环冗余检验 (CRC),那么也可以考虑利用类似的思路去加速查找对应的结果片段。 尽管如此,值得注意的是实际工程实践中往往更倾向于硬件电路或者专用指令集处理器来达成同样的目标,因为它们具备更高的实时性和更低功耗特性。 --- ### 总结 综上所述,虽然理论上存在多种方式让经典计算机科学理论融入无线通讯领域之中,但在真实场景下仍需综合考量性能指标等因素做出合理取舍。无论如何,深入理解基础原理始终有助于启发创新解决方案的设计灵感!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值