Largest Point
Time Limit: 1500/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Submission(s): 536 Accepted Submission(s): 230
Problem Description
Given the sequence
A
with
n
integers
t
1
,t
2
,⋯,t
n![]()
. Given the integral coefficients
a
and
b
. The fact that select two elements
t
i![]()
and
t
j![]()
of
A
and
i≠j
to maximize the value of
at
2
i
+bt
j![]()
, becomes the largest point.
Input
An positive integer
T
, indicating there are
T
test cases.
For each test case, the first line contains three integers corresponding to n (2≤n≤5×10
6
), a (0≤|a|≤10
6
)
and
b (0≤|b|≤10
6
)
. The second line contains
n
integers
t
1
,t
2
,⋯,t
n![]()
where
0≤|t
i
|≤10
6![]()
for
1≤i≤n
.
The sum of n
for all cases would not be larger than
5×10
6![]()
.
For each test case, the first line contains three integers corresponding to n (2≤n≤5×10
The sum of n
Output
The output contains exactly
T
lines.
For each test case, you should output the maximum value of at
2
i
+bt
j![]()
.
For each test case, you should output the maximum value of at
Sample Input
2 3 2 1 1 2 3 5 -1 0 -3 -3 0 3 3
Sample Output
Case #1: 20 Case #2: 0
Source
题意:求a*t1*t1+b*t2的值最大。
分析:数据不大,可以直接暴力求解,详解见代码。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <stack>
#include <queue>
#include <map>
#include <set>
#include <vector>
#include <cmath>
#include <algorithm>
using namespace std;
const double eps = 1e-6;
const double pi = acos(-1.0);
const int INF = 0x3f3f3f3f;
const int MOD = 1000000007;
#define ll long long
#define CL(a) memset(a,0,sizeof(a))
ll T,n,a,b;
ll t[1000010];
ll min1,min2,max1,max2,k;//分别存最小的数、第二小的数、最大的数、第二大的数和最接近0的数
int main ()
{
scanf ("%lld",&T);
for (int cas=1; cas<=T; cas++)
{
scanf ("%lld%lld%lld",&n,&a,&b);
k=INF;
for (int i=0; i<n; i++)
{
scanf ("%lld",&t[i]);
}
cout<<"Case #"<<cas<<": ";
sort(t, t+n);
for (int i=0; i<n; i++)
{
if (t[i]<=0&&t[i+1]>=0)
k=min(-t[i], t[i+1]);
}
min1=t[0]; min2=t[1];
max1=t[n-1]; max2=t[n-2];//找出这五个数
if (a<0&&b<0)//然后就是苦逼的找最大解了,注意负数的平方为正数
{
printf ("%lld\n",a*k*k+b*min1);
}
else if (a<0&&b>0)
{
printf ("%lld\n",a*k*k+b*max1);
}
else if (a>0&&b<0)
{
printf ("%lld\n",max(max(a*max1*max1+b*min1, a*min1*min1+b*min2), a*min2*min2+b*min1));
}
else if (a>0&&b>0)
{
printf ("%lld\n",max(max(a*max1*max1+b*max2, a*max2*max2+b*max1), a*min1*min1+b*max1));
}
else printf ("0\n");
}
return 0;
}