🎪专栏:深度学习
🎨开发平台:jupyter lab
🎄运行环境:python3、TensorFlow2.x
基于CNN的验证码识别
1. 数据获取
数据名:captcha.zip(8.7M)
百度网盘链接:https://pan.baidu.com/s/1kSkVjx5n_uVQbzPVc3SQjA
提取码:1234
2. 代码部分
(1)设置字体及随机种子
import tensorflow as tf
import matplotlib.pyplot as plt
# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
import os,PIL,random,pathlib
# 设置随机种子尽可能使结果可以重现
import numpy as np
np.random.seed(123)
# 设置随机种子尽可能使结果可以重现
tf.random.set_seed(123)
(2)获取数据
### 必须得是绝对路径
data_dir = 'D:/deng_d/研究生/python_project/Anaconda/class_task/deep_learning/datasets/captcha'
data_dir = pathlib.Path(data_dir)
all_image_paths = list(data_dir.glob('*'))
all_image_paths = [str(path) for path in all_image_paths]
# 打乱数据
#random.shuffle(all_image_paths)
# 获取数据标签
all_label_names = [path.split("\\")[-1].split(".")[0] for path in all_image_paths]
image_count = len(all_image_paths)
print("图片总数为:",image_count)
(3)显示部分数据
### 显示部分图片及其标签
plt.figure(figsize=(10,5))
for i in range(20):
plt.subplot(5,4,i+1)
plt.xticks([])
plt.yticks([])
plt.grid(False)
# 显示图片
images = plt.imread(all_image_paths[i])
plt.imshow(images)
# 显示标签
plt.xlabel(all_label_names[i])
plt.show()
(4)转换对应的标签目标值
### 用于图片对应标签的转换
number = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
alphabet = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z']
char_set = number + alphabet
char_set_len = len(char_set)
label_name_len = len(all_label_names[0])
# 将字符串数字化
def text2vec(text):
vector = np.zeros([label_name_len, char_set_len])
for i, c in enumerate(text):
idx = char_set.index(c)
vector[i][idx] = 1.0
return vector
all_labels = [text2vec(i) for i in all_label_names]
(5)处理图片部分
## 处理图片
def preprocess_image(image):
image = tf.image.decode_jpeg(image, channels=3)
image = tf.image.resize(image, [71, 224])
return image/255.0
## 获取图片并转换
def load_and_preprocess_image(path):
image = tf.io.read_file(path)
return preprocess_image(image)
AUTOTUNE = tf.data.experimental.AUTOTUNE
path_data = tf.data.Dataset.from_tensor_slices(all_image_paths)
image_data = path_data.map(load_and_preprocess_image, num_parallel_calls=AUTOTUNE)
label_data = tf.data.Dataset.from_tensor_slices(all_labels)
(6) 将数据和目标标签值打包
image_label_data = tf.data.Dataset.zip((image_data, label_data))
image_label_data
(7)打乱数据且获取训练集和验证集
##打乱数据
image_label_data = image_label_data.shuffle(buffer_size=image_count)
## 获取训练数据和验证数据
train_data = image_label_data.take(1000) # 前1000个batch
val_data = image_label_data.skip(1000) # 跳过前1000,选取后面的
## 设置训练集和验证集的相关属性
batch_size = 48
train_data = train_data.batch(batch_size)
train_data = train_data.prefetch(buffer_size=AUTOTUNE)
val_data = val_data.batch(batch_size)
val_data = val_data.prefetch(buffer_size=AUTOTUNE)
val_data
(8)构建模型
from tensorflow.keras import datasets, layers, models
model = models.Sequential([
layers.Conv2D(32, (3, 3), activation='relu', input_shape=(71, 224, 3)),#卷积层1,卷积核3*3
layers.MaxPooling2D((2, 2)),
layers.Conv2D(64, (3, 3), activation='relu'), #卷积层2,卷积核3*3
layers.MaxPooling2D((2, 2)),
layers.Conv2D(128, (3, 3), activation='relu'), #卷积层2,卷积核3*3
layers.MaxPooling2D((2, 2)), #池化层2,2*2采样
layers.Flatten(), #Flatten层,连接卷积层与全连接层
#mobile_net,
layers.Dropout(0.5), #防止过拟合
layers.Dense(1000, activation='relu'), #全连接层,特征进一步提取
layers.Dense(label_name_len * char_set_len),
layers.Reshape([label_name_len, char_set_len]),
layers.Softmax() #输出层,输出预期结果
])
# 打印网络结构
model.summary()
(9)模型编译及训练
# 模型编译
model.compile(optimizer = tf.keras.optimizers.Adam(lr = 0.001),
loss='categorical_crossentropy',
metrics=['accuracy'])
# 模型训练
epochs = 20
history = model.fit(
train_data,
validation_data=val_data,
epochs=epochs
)
(10)模型精确度曲线及损失曲线
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs_range = range(epochs)
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc,'b', label='Training Accuracy')
plt.plot(epochs_range, val_acc,'r',label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss,'b', label='Training Loss')
plt.plot(epochs_range, val_loss,'r', label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
(11)模型验证 – 预测数据
### 还原标签(向量->字符串)
def vec2text(vec):
text = []
for i, c in enumerate(vec):
text.append(char_set[c])
return "".join(text)
plt.figure(figsize=(10, 8)) # 图形的宽为10高为8
## 随机获取图片并进行展示
for images, labels in val_data.take(1):
for i in range(6):
ax = plt.subplot(3, 3, i + 1)
# 显示图片
plt.imshow(images[i])
# 需要给图片增加一个维度
img_array = tf.expand_dims(images[i], 0)
# 使用模型预测验证码
predictions = model.predict(img_array)
plt.title(vec2text(np.argmax(predictions, axis=2)[0]))
plt.axis("off")
转至:https://mtyjkh.blog.youkuaiyun.com/article/details/118422302?spm=1001.2014.3001.5502