open-cd中的changerformer网络结构分析

open-cd


在这里插入图片描述

该开源库基于:
mmcv
mmseg
mmdet
mmengine

1.安装

在安装过程中遇到的问题:
1.pytorch版本问题,open-cd采用的mmcv版本比较低,建议安装2.3以下版本pytorch,太高了mmcv可能不太适配,先安装pytorch,在安装mmcv,我在安装时用的版本

pytorch                   2.1.2           py3.9_cuda12.1_cudnn8_0    pytorch
mmcv                      2.1.0                    pypi_0    pypi

mmcv安装方式
在这里插入图片描述
该方式同样适用于解决:

note: This error originates from a subprocess, and is likely not a problem with pip.
  ERROR: Failed building wheel for mmcv
  Running setup.py clean for mmcv
Failed to build mmcv
ERROR: ERROR: Failed to build installable wheels for some pyproject.toml based projects (mmcv)

参考

之后参照博主的的安装步骤安装opencd的开原文件即可(建议安装源文件,直接 opencd第三方包形式后期不方便调试):

# Install OpenMMLab Toolkits as Python packages
pip install -U openmim
mim install mmengine
mim install "mmpretrain>=1.0.0rc7"
pip install "mmsegmentation>=1.2.2"
pip install "mmdet>=3.0.0"

# Install Opencd
git clone https://github.com/likyoo/open-cd.git
cd open-cd
pip install -v -e .

2.源码结构分析

在这里插入图片描述

该库主要的文件时1.config参数文件,2.opencd模型架构文件,3.训练推理分析工具,4.mmlab
这里主要介绍2.opencd模型框架文件,文件下包含:

在这里插入图片描述

其中,model文件夹下包含模型结构基础文件:

在这里插入图片描述

变化检测大致遵循语义分割的编码结构、neck结构、以及解码结构。
如果使用过mmsegmentation机会发现,backbone中存放着雨参数文件对应的主干网络,相应的是neck,decoder,这里changer_detector里面是主要的模型架构如Encoder-Decoder。

open-cd与mmseg这类参数化的文件非常适合进行模型复现或者进行工程化应用;但对一些科研小白,特别是非计算机专业的科研小白需要改进网络就不太友好;这里直观的作用下模型架构的组合使用,方便大家理解和魔改(~~别越看越迷糊就行)
这里以changerformer-mitb0为例:


前提是已完成open-cd的安装官方issue
下面内容摘自opencd/model/
删除每个类前面的注册表装饰器 @MODELS.register_module(),报错提示类已注册

主干网络

# Copyright (c) OpenMMLab. All rights reserved.
import math
import warnings

import torch
import torch.nn as nn
import torch.utils.checkpoint as cp
from mmcv.cnn import Conv2d, build_activation_layer, build_norm_layer
from mmcv.cnn.bricks.drop import build_dropout
from mmcv.cnn.bricks.transformer import MultiheadAttention
from mmengine.model import BaseModule, ModuleList, Sequential
from mmengine.model.weight_init import (constant_init, normal_init,
                                        trunc_normal_init)

from mmseg.registry import MODELS
## 下面两个依赖在opencd/model/utils中可以找到
from .embed import PatchEmbed
from .shape_convert import  nchw_to_nlc, nlc_to_nchw


class MixFFN(BaseModule):
    """An implementation of MixFFN of Segformer.

    The differences between MixFFN & FFN:
        1. Use 1X1 Conv to replace Linear layer.
        2. Introduce 3X3 Conv to encode positional information.
    Args:
        embed_dims (int): The feature dimension. Same as
            `MultiheadAttention`. Defaults: 256.
        feedforward_channels (int): The hidden dimension of FFNs.
            Defaults: 1024.
        act_cfg (dict, optional): The activation config for FFNs.
            Default: dict(type='ReLU')
        ffn_drop (float, optional): Probability of an element to be
            zeroed in FFN. Default 0.0.
        dropout_layer (obj:`ConfigDict`): The dropout_layer used
            when adding the shortcut.
        init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization.
            Default: None.
    """

    def __init__(self,
                 embed_dims,
                 feedforward_channels,
                 act_cfg=dict(type='GELU'),
                 ffn_drop=0.,
                 dropout_layer=None,
                 init_cfg=None):
        super().__init__(init_cfg)

        self.embed_dims = embed_dims
        self.feedforward_channels = feedforward_channels
        self.act_cfg = act_cfg
        self.activate = build_activation_layer(act_cfg)

        in_channels = embed_dims
        fc1 = Conv2d(
            in_channels=in_channels,
            out_channels=feedforward_channels,
            kernel_size=1,
            stride=1,
            bias=True)
        # 3x3 depth wise conv to provide positional encode information
        pe_conv = Conv2d(
            in_channels=feedforward_channels,
            out_channels=feedforward_channels,
            kernel_size=3,
            stride=1,
            padding=(3 - 1) // 2,
            bias=True,
            groups=feedforward_channels)
        fc2 = Conv2d(
            in_channels=feedforward_channels,
            out_channels=in_channels,
            kernel_size=1,
            stride=1,
            bias=True)
        drop = nn.Dropout(ffn_drop)
        layers = [fc1, pe_conv, self.activate, drop, fc2, drop]
        self.layers = Sequential(*layers)
        self.dropout_layer = build_dropout(
            dropout_layer) if dropout_layer else torch.nn.Identity()

    def forward(self, x, hw_shape, identity=None):
        out = nlc_to_nchw(x, hw_shape)
        out = self.layers(out)
        out = nchw_to_nlc(out)
        if identity is None:
            identity = x
        return identity + self.dropout_layer(out)


class EfficientMultiheadAttention(MultiheadAttention):
    """An implementation of Efficient Multi-head Attention of Segformer.

    This module is modified from MultiheadAttention which is a module from
    mmcv.cnn.bricks.transformer.
    Args:
        embed_dims (int): The embedding dimension.
        num_heads (int): Parallel attention heads.
        attn_drop (float): A Dropout layer on attn_output_weights.
            Default: 0.0.
        proj_drop (float): A Dropout layer after `nn.MultiheadAttention`.
            Default: 0.0.
        dropout_layer (obj:`ConfigDict`): The dropout_layer used
            when adding the shortcut. Default: None.
        init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization.
            Default: None.
        batch_first (bool): Key, Query and Value are shape of
            (batch, n, embed_dim)
            or (n, batch, embed_dim). Default: False.
        qkv_bias (bool): enable bias for qkv if True. Default True.
        norm_cfg (dict): Config dict for normalization layer.
            Default: dict(type='LN').
        sr_ratio (int): The ratio of spatial reduction of Efficient Multi-head
            Attention of Segformer. Default: 1.
    """

    def __init__(self,
                 embed_dims,
                 num_heads,
                 attn_drop=0.,
                 proj_drop=0.,
                 dropout_layer=None,
                 init_cfg=None,
                 batch_first=True,
                 qkv_bias=False,
                 norm_cfg=dict(type='LN'),
                 sr_ratio=1):
        super().__init__(
            embed_dims,
            num_heads,
            attn_drop,
            proj_drop,
            dropout_layer=dropout_layer,
            init_cfg=init_cfg,
            batch_first=batch_first,
            bias=qkv_bias)

        self.sr_ratio = sr_ratio
        if sr_ratio > 1:
            self.sr = Conv2d(
                in_channels=embed_dims,
                out_channels=embed_dims,
                kernel_size=sr_ratio,
                stride=sr_ratio)
            # The ret[0] of build_norm_layer is norm name.
            self.norm = build_norm_layer(norm_cfg, embed_dims)[1]

        # handle the BC-breaking from https://github.com/open-mmlab/mmcv/pull/1418 # noqa
        from mmseg import digit_version, mmcv_version
        if mmcv_version < digit_version('1.3.17'):
            warnings.warn('The legacy version of forward function in'
                          'EfficientMultiheadAttention is deprecated in'
                          'mmcv>=1.3.17 and will no longer support in the'
                          'future. Please upgrade your mmcv.')
            self.forward = self.legacy_forward

    def forward(self, x, hw_shape, identity=None):

        x_q = x
        if self.sr_ratio > 1:
            x_kv = nlc_to_nchw(x, hw_shape)
            x_kv = self.sr(x_kv)
            x_kv = nchw_to_nlc(x_kv)
            x_kv = self.norm(x_kv)
        else:
            x_kv = x

        if identity is None:
            identity = x_q

        # Because the dataflow('key', 'query', 'value') of
        # ``torch.nn.MultiheadAttention`` is (num_query, batch,
        # embed_dims), We should adjust the shape of dataflow from
        # batch_first (batch, num_query, embed_dims) to num_query_first
        # (num_query ,batch, embed_dims), and recover ``attn_output``
        # from num_query_first to batch_first.
        if self.batch_first:
            x_q = x_q.transpose(0, 1)
            x_kv = x_kv.transpose(0, 1)

        out = self.attn(query=x_q, key=x_kv, value=x_kv)[0]

        if self.batch_first:
            out = out.transpose(0, 1)

        return identity + self.dropout_layer(self.proj_drop(out))

    def legacy_forward(self, x, hw_shape, identity=None):
        """multi head attention forward in mmcv version < 1.3.17."""

        x_q = x
        if self.sr_ratio > 1:
            x_kv = nlc_to_nchw(x, hw_shape)
            x_kv = self.sr(x_kv)
            x_kv = nchw_to_nlc(x_kv)
            x_kv = self.norm(x_kv)
        else:
            x_kv = x

        if identity is None:
            identity = x_q

        # `need_weights=True` will let nn.MultiHeadAttention
        # `return attn_output, attn_output_weights.sum(dim=1) / num_heads`
        # The `attn_output_weights.sum(dim=1)` may cause cuda error. So, we set
        # `need_weights=False` to ignore `attn_output_weights.sum(dim=1)`.
        # This issue - `https://github.com/pytorch/pytorch/issues/37583` report
        # the error that large scale tensor sum operation may cause cuda error.
        out = self.attn(query=x_q, key=x_kv, value=x_kv, need_weights=False)[0]

        return identity + self.dropout_layer(self.proj_drop(out))


class TransformerEncoderLayer(BaseModule):
    """Implements one encoder layer in Segformer.

    Args:
        embed_dims (int): The feature dimension.
        num_heads (int): Parallel attention heads.
        feedforward_channels (int): The hidden dimension for FFNs.
        drop_rate (float): Probability of an element to be zeroed.
            after the feed forward layer. Default 0.0.
        attn_drop_rate (float): The drop out rate for attention layer.
            Default 0.0.
        drop_path_rate (float): stochastic depth rate. Default 0.0.
        qkv_bias (bool): enable bias for qkv if True.
            Default: True.
        act_cfg (dict): The activation config for FFNs.
            Default: dict(type='GELU').
        norm_cfg (dict): Config dict for normalization layer.
            Default: dict(type='LN').
        batch_first (bool): Key, Query and Value are shape of
            (batch, n, embed_dim)
            or (n, batch, embed_dim). Default: False.
        init_cfg (dict, optional): Initialization config dict.
            Default:None.
        sr_ratio (int): The ratio of spatial reduction of Efficient Multi-head
            Attention of Segformer. Default: 1.
        with_cp (bool): Use checkpoint or not. Using checkpoint will save
            some memory while slowing down the training speed. Default: False.
    """

    def __init__(self,
                 embed_dims,
                 num_heads,
                 feedforward_channels,
                 drop_rate=0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云朵不吃雨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值