红黑树实现过于复杂,当不需要符号表中的键值有序时可以使用哈希表来实现符号表
哈希表同红黑树一样高效,但是实现简单
哈希表使用数组存储键值对,通过一个hash函数把key转成数组的索引,然后把value存储在数组中该索引的位置
如果不同的key通过hash函数转换的索引i相同,则把i位置的不同key-value值通过链表链接起来
查找的时候先通过hash找到索引位置,再遍历链表找到与key相同的key-value值
public class SeparateChainingHashST<Key, Value> {
private static final int INIT_CAPACITY = 4;
private int n; // number of key-value pairs
private int m; // hash table size
private SequentialSearchST<Key, Value>[] st; // array of linked-list symbol tables
/**
* Initializes an empty symbol table.
*/
public SeparateChainingHashST() {
this(INIT_CAPACITY);
}
/**
* Initializes an empty symbol table with {@code m} chains.
* @param m the initial number of chains
*/
public SeparateChainingHashST(int m) {
this.m = m;
st = (SequentialSearchST<Key, Value>[])new SequentialSearchST[m];
for(int i = 0; i < m; i++) {
st[i] = new SequentialSearchST<Key, Value>();
}
}
// resize the hash table to have the given number of chains,
// rehashing all of the keys
private void resize(int chains) {
SeparateChainingHashST<Key, Value> temp = new SeparateChainingHashST<Key, Value>(chains);
for (int i = 0; i < m; i++) {
for (Key key : st[i].keys()) {
temp.put(key, st[i].get(key));
}
}
this.m = temp.m;
this.n = temp.n;
this.st = temp.st;
}
// hash value between 0 and m-1
//hash函数一般实现是把key转换成32为无符号整数,然后与数组长度m取余就可以得到一个0到m-1的索引值
//hash函数的设计很重要,不均匀的hash值会导致同一索引位置的链表很长,查询就比较慢了
//java为基本的Integer,Long,Double,String都实现了hash函数hashcode, 查找时先根据key的hashCode找到数组索引,
//然后遍历链表通过equal()判断key是否相同
//我们在设计自定义类型的hashCode函数时可以参考java库里面的实现,比如把每个成员的hashCode相加
private int hash(Key key) {
return (key.hashCode() & 0x7fffffff) % m;
}
/**
* Returns the number of key-value pairs in this symbol table.
*
* @return the number of key-value pairs in this symbol table
*/
public int size() {
return n;
}
/**
* Returns true if this symbol table is empty.
*
* @return {@code true} if this symbol table is empty;
* {@code false} otherwise
*/
public boolean isEmpty() {
return size() == 0;
}
/**
* Returns true if this symbol table contains the specified key.
*
* @param key the key
* @return {@code true} if this symbol table contains {@code key};
* {@code false} otherwise
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
public boolean contains(Key key) {
if (key == null) throw new IllegalArgumentException("argument to contains() is null");
return get(key) != null;
}
/**
* Returns the value associated with the specified key in this symbol table.
*
* @param key the key
* @return the value associated with {@code key} in the symbol table;
* {@code null} if no such value
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
public Value get(Key key) {
if (key == null) throw new IllegalArgumentException("argument to get() is null");
return st[hash(key)].get(key);
}
/**
* Inserts the specified key-value pair into the symbol table, overwriting the old
* value with the new value if the symbol table already contains the specified key.
* Deletes the specified key (and its associated value) from this symbol table
* if the specified value is {@code null}.
*
* @param key the key
* @param val the value
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
public void put(Key key, Value val) {
if (key == null) throw new IllegalArgumentException("first argument to put() is null");
if (val == null) {
delete(key);
return;
}
// double table size if average length of list >= 10
if (n >= 10*m) resize(2*m);
int i = hash(key);
if (!st[i].contains(key)) n++;
st[i].put(key, val);
}
/**
* Removes the specified key and its associated value from this symbol table
* (if the key is in this symbol table).
*
* @param key the key
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
public void delete(Key key) {
if (key == null) throw new IllegalArgumentException("argument to delete() is null");
int i = hash(key);
if (st[i].contains(key)) n--;
st[i].delete(key);
// halve table size if average length of list <= 2
if (m > INIT_CAPACITY && n <= 2*m) resize(m/2);
}
// return keys in symbol table as an Iterable
public Iterable<Key> keys() {
Queue<Key> queue = new Queue<Key>();
for (int i = 0; i < m; i++) {
for (Key key : st[i].keys())
queue.enqueue(key);
}
return queue;
}
}
//链表实现的符号表
package chapter3_4;
import StdLib.StdIn;
import StdLib.StdOut;
import chapter1_3.Queue;
/*************************************************************************
* Compilation: javac SequentialSearchST.java
* Execution: java SequentialSearchST
* Dependencies: StdIn.java StdOut.java
* Data files: http://algs4.cs.princeton.edu/31elementary/tinyST.txt
*
* Symbol table implementation with sequential search in an
* unordered linked list of key-value pairs.
*
* % more tinyST.txt
* S E A R C H E X A M P L E
*
* % java SequentialSearchST < tiny.txt
* L 11
* P 10
* M 9
* X 7
* H 5
* C 4
* R 3
* A 8
* E 12
* S 0
*
*************************************************************************/
public class SequentialSearchST<Key, Value> {
private int N; // number of key-value pairs
private Node first; // the linked list of key-value pairs
// a helper linked list data type
private class Node {
private Key key;
private Value val;
private Node next;
public Node(Key key, Value val, Node next) {
this.key = key;
this.val = val;
this.next = next;
}
}
// return number of key-value pairs
public int size() { return N; }
// is the symbol table empty?
public boolean isEmpty() { return size() == 0; }
// does this symbol table contain the given key?
public boolean contains(Key key) {
return get(key) != null;
}
// return the value associated with the key, or null if the key is not present
public Value get(Key key) {
for (Node x = first; x != null; x = x.next) {
if (key.equals(x.key)) return x.val;
}
return null;
}
// add a key-value pair, replacing old key-value pair if key is already present
public void put(Key key, Value val) {
if (val == null) { delete(key); return; }
for (Node x = first; x != null; x = x.next)
if (key.equals(x.key)) { x.val = val; return; }
first = new Node(key, val, first);
N++;
}
public void delete(Key key) {
if (isEmpty()) return;
if (key.equals(first.key)) {
first = first.next;
N--;
return;
}
for (Node x = first.next, p = first; x != null; p = x,x = x.next) {
if (key.equals(x.key)) {
p.next = x.next;
N--;
return;
}
}
}
// remove key-value pair with given key (if it's in the table)
// public void delete(Key key) {
// first = delete(first, key);
// }
// delete key in linked list beginning at Node x
// warning: function call stack too large if table is large
private Node delete(Node x, Key key) {
if (x == null) return null;
if (key.equals(x.key)) { N--; return x.next; }
x.next = delete(x.next, key);
return x;
}
// return all keys as an Iterable
public Iterable<Key> keys() {
Queue<Key> queue = new Queue<Key>();
for (Node x = first; x != null; x = x.next)
queue.enqueue(x.key);
return queue;
}
/***********************************************************************
* Test client
**********************************************************************/
public static void main(String[] args) {
SequentialSearchST<String, Integer> st = new SequentialSearchST<String, Integer>();
for (int i = 0; !StdIn.isEmpty(); i++) {
String key = StdIn.readString();
st.put(key, i);
}
for (String s : st.keys())
StdOut.println(s + " " + st.get(s));
}
}
package chapter3_4;
import StdLib.StdIn;
import StdLib.StdOut;
import chapter1_3.Queue;
//上面实现的哈希表当Key hash的索引位置相同时,会把相同索引位置的k-v通过链表连接起来,这种方式叫做拉链法
//还有一种哈希表的实现方式,当Key hash的索引位置相同时不通过链表连接,而是从此索引的位置开始从数组中找一个空位插入进去
//这种方式叫做线性探测法,比较好理解,代码如下
public class LinearProbingHashST<Key, Value> {
private static final int INIT_CAPACITY = 4;
private int n; // number of key-value pairs in the symbol table
private int m; // size of linear probing table
private Key[] keys; // the keys
private Value[] vals; // the values
/**
* Initializes an empty symbol table.
*/
public LinearProbingHashST() {
this(INIT_CAPACITY);
}
/**
* Initializes an empty symbol table with the specified initial capacity.
*
* @param capacity the initial capacity
*/
public LinearProbingHashST(int capacity) {
m = capacity;
n = 0;
keys = (Key[]) new Object[m];
vals = (Value[]) new Object[m];
}
/**
* Returns the number of key-value pairs in this symbol table.
*
* @return the number of key-value pairs in this symbol table
*/
public int size() {
return n;
}
/**
* Returns true if this symbol table is empty.
*
* @return {@code true} if this symbol table is empty;
* {@code false} otherwise
*/
public boolean isEmpty() {
return size() == 0;
}
/**
* Returns true if this symbol table contains the specified key.
*
* @param key the key
* @return {@code true} if this symbol table contains {@code key};
* {@code false} otherwise
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
public boolean contains(Key key) {
if (key == null) throw new IllegalArgumentException("argument to contains() is null");
return get(key) != null;
}
// hash function for keys - returns value between 0 and M-1
private int hash(Key key) {
return (key.hashCode() & 0x7fffffff) % m;
}
// resizes the hash table to the given capacity by re-hashing all of the keys
private void resize(int capacity) {
LinearProbingHashST<Key, Value> temp = new LinearProbingHashST<Key, Value>(capacity);
for (int i = 0; i < m; i++) {
if (keys[i] != null) {
temp.put(keys[i], vals[i]);
}
}
keys = temp.keys;
vals = temp.vals;
m = temp.m;
}
/**
* Inserts the specified key-value pair into the symbol table, overwriting the old
* value with the new value if the symbol table already contains the specified key.
* Deletes the specified key (and its associated value) from this symbol table
* if the specified value is {@code null}.
*
* @param key the key
* @param val the value
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
public void put(Key key, Value val) {
if (key == null) throw new IllegalArgumentException("first argument to put() is null");
if (val == null) {
delete(key);
return;
}
// double table size if 50% full
if (n >= m/2) resize(2*m);
int i;
for (i = hash(key); keys[i] != null; i = (i + 1) % m) {
if (keys[i].equals(key)) {
vals[i] = val;
return;
}
}
keys[i] = key;
vals[i] = val;
n++;
}
/**
* Returns the value associated with the specified key.
* @param key the key
* @return the value associated with {@code key};
* {@code null} if no such value
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
public Value get(Key key) {
if (key == null) throw new IllegalArgumentException("argument to get() is null");
for (int i = hash(key); keys[i] != null; i = (i + 1) % m)
if (keys[i].equals(key))
return vals[i];
return null;
}
/**
* Removes the specified key and its associated value from this symbol table
* (if the key is in this symbol table).
*
* @param key the key
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
public void delete(Key key) {
if (key == null) throw new IllegalArgumentException("argument to delete() is null");
if (!contains(key)) return;
// find position i of key
int i = hash(key);
while (!key.equals(keys[i])) {
i = (i + 1) % m;
}
// delete key and associated value
keys[i] = null;
vals[i] = null;
//从i+1到keys[i] == null的这些键,可能hash的位置是i,当删除i位置的键后,在查找这些键就找不到了,所以需要把这些键重新插入进去
//因为数组大小没有改变,所以这些键重新插入的位置是按顺序从i到keys[i] == null
// rehash all keys in same cluster
i = (i + 1) % m;
while (keys[i] != null) {
// delete keys[i] an vals[i] and reinsert
Key keyToRehash = keys[i];
Value valToRehash = vals[i];
keys[i] = null;
vals[i] = null;
n--;
put(keyToRehash, valToRehash);
i = (i + 1) % m;
}
n--;
// halves size of array if it's 12.5% full or less
if (n > 0 && n <= m/8) resize(m/2);
assert check();
}
/**
* Returns all keys in this symbol table as an {@code Iterable}.
* To iterate over all of the keys in the symbol table named {@code st},
* use the foreach notation: {@code for (Key key : st.keys())}.
*
* @return all keys in this symbol table
*/
public Iterable<Key> keys() {
Queue<Key> queue = new Queue<Key>();
for (int i = 0; i < m; i++)
if (keys[i] != null) queue.enqueue(keys[i]);
return queue;
}
// integrity check - don't check after each put() because
// integrity not maintained during a delete()
private boolean check() {
// check that hash table is at most 50% full
if (m < 2*n) {
System.err.println("Hash table size m = " + m + "; array size n = " + n);
return false;
}
// check that each key in table can be found by get()
for (int i = 0; i < m; i++) {
if (keys[i] == null) continue;
else if (get(keys[i]) != vals[i]) {
System.err.println("get[" + keys[i] + "] = " + get(keys[i]) + "; vals[i] = " + vals[i]);
return false;
}
}
return true;
}
/**
* Unit tests the {@code LinearProbingHashST} data type.
*
* @param args the command-line arguments
*/
public static void main(String[] args) {
LinearProbingHashST<String, Integer> st = new LinearProbingHashST<String, Integer>();
for (int i = 0; !StdIn.isEmpty(); i++) {
String key = StdIn.readString();
st.put(key, i);
}
// print keys
for (String s : st.keys())
StdOut.println(s + " " + st.get(s));
}
}