optimizer和scheduler

本文介绍了PyTorch中优化器(optimizer)与学习率调度器(scheduler)的使用方法。详细解释了不同类型的优化器如SGD、Adam及学习率调度策略如LambdaLR、StepLR等,并探讨了它们在训练过程中的作用时机。
ACE-Step

ACE-Step

音乐合成
ACE-Step

ACE-Step是由中国团队阶跃星辰(StepFun)与ACE Studio联手打造的开源音乐生成模型。 它拥有3.5B参数量,支持快速高质量生成、强可控性和易于拓展的特点。 最厉害的是,它可以生成多种语言的歌曲,包括但不限于中文、英文、日文等19种语言

optimizer = optim.SGD(pg, lr=args.lr, momentum=0.9, weight_decay=5E-5)
lf = lambda x: ((1 + math.cos(x * math.pi / args.epochs)) / 2) * (1 - args.lrf) + args.lrf  # cosine
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)

optimizer指定使用哪个优化器;

scheduler对优化器的学习率进行调整。

只有用了optimizer.step(),模型才会更新;而scheduler.step()是对lr进行调整。optimizer.step()通常用在每个mini-batch里面,而scheduler.step()通常用在epoch里面。

optimizer种类有:

  • optim.SGD
  • optim.Adam

scheduler种类有:

pytorch有torch.optim.lr_scheduler模块提供了一些根据epoch训练次数来调整学习率(learning rate)的方法。一般情况下我们会设置随着epoch的增大而逐渐减小学习率从而达到更好的训练效果。学习率的调整应该放在optimizer更新之后。

  • torch.optim.lr_scheduler.LambdaLR
  • torch.optim.lr_scheduler.StepLR
  • torch.optim.lr_scheduler.MultiStepLR
  • torch.optim.lr_scheduler.ExponentialLR

参考:训练时的学习率调整:optimizer和scheduler - 知乎 (zhihu.com)

您可能感兴趣的与本文相关的镜像

ACE-Step

ACE-Step

音乐合成
ACE-Step

ACE-Step是由中国团队阶跃星辰(StepFun)与ACE Studio联手打造的开源音乐生成模型。 它拥有3.5B参数量,支持快速高质量生成、强可控性和易于拓展的特点。 最厉害的是,它可以生成多种语言的歌曲,包括但不限于中文、英文、日文等19种语言

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值