堆排序

本文详细介绍了堆排序算法的工作原理,包括如何构建初始堆、调整堆结构以及实现完整的排序过程。通过具体的实例展示了堆排序如何逐步将无序数组变为有序数组。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

堆排序实例

首先,建立初始的堆结构如图:
这里写图片描述

然后,交换堆顶的元素和最后一个元素,此时最后一个位置作为有序区(有序区显示为黄色),然后进行其他无序区的堆调整,重新得到大顶堆后,交换堆顶和倒数第二个元素的位置……
这里写图片描述
这里写图片描述

这里写图片描述

堆排序分析
  堆排序方法对记录数较少的文件并不值得提倡,但对n较大的文件还是很有效的。因为其运行时间主要耗费在建初始堆和调整建新堆时进行的反复“筛选”上。

  堆排序在最坏的情况下,其时间复杂度也为O(nlogn)。相对于快速排序来说,这是堆排序的最大优点。此外,堆排序仅需一个记录大小的供交换用的辅助存储空间。

在第一个元素的索引为 0 的情形中:
性质一:索引为i的左孩子的索引是 (2*i+1);
性质二:索引为i的左孩子的索引是 (2*i+2);
性质三:索引为i的父结点的索引是 floor((i-1)/2);

/* 
 * (最大)堆的向下调整算法
 *
 * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
 *     其中,N为数组下标索引值,如数组中第1个数对应的N为0。
 *
 * 参数说明:
 *     a -- 待排序的数组
 *     start -- 被下调节点的起始位置(一般为0,表示从第1个开始)
 *     end   -- 截至范围(一般为数组中最后一个元素的索引)
 */
void maxheap_down(int a[], int start, int end)
{
    int c = start;            // 当前(current)节点的位置
    int l = 2*c + 1;        // 左(left)孩子的位置
    int tmp = a[c];            // 当前(current)节点的大小
    for (; l <= end; c=l,l=2*l+1)
    {
        // "l"是左孩子,"l+1"是右孩子
        if ( l < end && a[l] < a[l+1])
            l++;        // 左右两孩子中选择较大者,即m_heap[l+1]
        if (tmp >= a[l])
            break;        // 调整结束
        else            // 交换值
        {
            a[c] = a[l];
            a[l]= tmp;
        }
    }
}

/*
 * 堆排序(从小到大)
 *
 * 参数说明:
 *     a -- 待排序的数组
 *     n -- 数组的长度
 */
void heap_sort_asc(int a[], int n)
{
    int i;

    // 从(n/2-1) --> 0逐次遍历。遍历之后,得到的数组实际上是一个(最大)二叉堆。
    for (i = n / 2 - 1; i >= 0; i--)
        maxheap_down(a, i, n-1);

    // 从最后一个元素开始对序列进行调整,不断的缩小调整的范围直到第一个元素
    for (i = n - 1; i > 0; i--)
    {
        // 交换a[0]和a[i]。交换后,a[i]是a[0...i]中最大的。
        swap(a[0], a[i]);
        // 调整a[0...i-1],使得a[0...i-1]仍然是一个最大堆。
        // 即,保证a[i-1]是a[0...i-1]中的最大值。
        maxheap_down(a, 0, i-1);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值