基于pytorch的MNIST手写数字识别

一、MNIST数据集

  MNIST数据集包括:

              60000张训练集28*28的灰度图像及标签

              10000张测试集28*28的灰度图像及标签

以下是基于PyTorchMNIST手写数字识别的步骤: 1.导入必要的库 ```python import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from torchvision import datasets, transforms ``` 2.定义数据预处理操作 ```python transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) ``` 3.加载数据集 ```python train_data = datasets.MNIST(root='data', train=True, download=True, transform=transform) test_data = datasets.MNIST(root='data', train=False, download=True, transform=transform) ``` 4.定义数据加载器 ```python batch_size = 64 train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True) test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=True) ``` 5.定义模型 ```python class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1) self.dropout1 = nn.Dropout2d(0.25) self.dropout2 = nn.Dropout2d(0.5) self.fc1 = nn.Linear(64*7*7, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = nn.functional.relu(self.conv1(x)) x = nn.functional.relu(self.conv2(x)) x = nn.functional.max_pool2d(x, 2) x = self.dropout1(x) x = torch.flatten(x, 1) x = nn.functional.relu(self.fc1(x)) x = self.dropout2(x) x = self.fc2(x) return nn.functional.log_softmax(x, dim=1) model = Net() ``` 6.定义优化器和损失函数 ```python learning_rate = 0.01 optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=0.5) criterion = nn.CrossEntropyLoss() ``` 7.训练模型 ```python epochs = 10 for epoch in range(epochs): for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() if batch_idx % 100 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx*len(data), len(train_loader.dataset), 100.*batch_idx/len(train_loader), loss.item())) ``` 8.测试模型 ```python test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: output = model(data) test_loss += criterion(output, target).item() pred = output.data.max(1, keepdim=True)[1] correct += pred.eq(target.data.view_as(pred)).sum() test_loss /= len(test_loader.dataset) accuracy = 100. * correct / len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), accuracy)) ``` 这就是基于PyTorchMNIST手写数字识别的步骤。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

仲夏夜之梦xz

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值