基础知识
极大似然估计
贝叶斯系数 bayes factor (Jeffreys 1961; kass & Raftery 1995)
AIC 简介 (Akaike 1974)
由 Kullback-Leibler Information Entropy 的 approximate minimization 衍生而来
AIC = -2ln Lmax + 2k
其中 Lmax 是所选模型的极大似然估计 k 是模型参数的数量
它的表示了实际数据分布与模型分布见的差异有多大
所以AIC值越小,实际数据与模型数据匹配度越高
BIC 简介 (Schwarz 1978)
BIC 由approximate the evidence ratios of models (bayes factor) 假设数据是独立的而且是identically distributed
BIC = -2ln Lmax + k lnN
其中N是用来拟合的数据的数量
CIC 简介
DIC 简介
参考资料
[1] WIKI Akaike information criterion Bayesian information criterion;
[2] information criteria for astrophysical model selection
[3] information criteria and model selection
[4] on the derivation of the Bayesian information crieria
【5】 Akaike, H. (1974). ``A new look at the statistical model indentification''.IEEE Transactions on Automatic Control, 19:716--722.
http://wenku.baidu.com/view/2dfd135bbe23482fb4da4c22.html
Estimating the Dimension of a Model
LIKELIHOOD OF A MODEL AND INFORMATION CRITERIA.pdf
Methods for Determining the Order of an Autoregressive-Moving Average Process A Survey.pd
THE BEHAVIOR OF MAXIMUM LIKELIHOOD ESTIMATES UNDER NONSTANDARD CONDITIONS
PETER J. HUBER
A New Look at the Statistical Model Identification
HIROTUGU AI(AIKE, JIEJIBER, IEEE
On the Likelihood of a Time Series Model
Author(s): Hirotugu Akaike
Time Series Analysis with R
Walter Zucchini, Oleg Nenadi´c