矩形覆盖

题目描述
10、我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

解题思路:
1)、当 n = 1时,矩阵大小n = 2时,为2*1时,只有1种覆盖方法,即f(1) = 1;

2)、当 n = 2时,矩阵大小为2*2时,有2种覆盖方法,即f(2) = 2;

3)、当 n = 3时,矩阵大小为2*3时,有3种覆盖方法,即f(3) = 3;

4)、当然我们没必要一个个去列举所有的,直接假设有n个大小的2*1矩阵,即2*n矩阵进行考虑方法。
当第一次覆盖2*1的小矩阵(竖着放),则后面的覆盖方法为f(n-1);
当第一次覆盖1*2的小矩阵(横着放),对应下方的1*2的小矩阵摆放必然是确定的,所以后面的覆盖方法为f(n-2)。
所以总的覆盖方法为:f(n) = f(n-1) + f(n-2); 依旧是斐波那契数列的算法。

class Solution {
public:
    int rectCover(int number) {
        // 斐波那契 2017-6-18 
        if(number==1) return 1;
         if(number==0) return 0;
         if(number==2) return 2;
        number-=2;
        int f=1;
        int s=2;
        while(number--)
            {
             s=s+f;
             f=s-f;
            }
         return s;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值