🛡️ 军用车辆检测数据集-3,143张图片-文章末添加wx领取数据集

📦 已发布目标检测数据集合集(持续更新)
| 数据集名称 | 图像数量 | 应用方向 | 博客链接 |
|---|---|---|---|
| 🔌 电网巡检检测数据集 | 1600 张 | 电力设备目标检测 | 点击查看 |
| 🔥 火焰 / 烟雾 / 人检测数据集 | 10000张 | 安防监控,多目标检测 | 点击查看 |
| 🚗 高质量车牌识别数据集 | 10,000 张 | 交通监控 / 车牌识别 | 点击查看 |
| 🌿 农田杂草航拍检测数据集 | 1,200 张 | 农业智能巡检 | 点击查看 |
| 🐑 航拍绵羊检测数据集 | 1,700 张 | 畜牧监控 / 航拍检测 | 点击查看 |
| 🌡️ 热成像人体检测数据集 | 15,000 张 | 热成像下的行人检测 | 点击查看 |
| 🦺 安全背心检测数据集 | 3,897 张 | 工地安全 / PPE识别 | 点击查看 |
| 🚀 火箭检测数据集介绍 | 12,000 张 | 智慧医疗 / 养老护理 | 点击查看 |
| ⚡ 绝缘子故障检测数据集 | 2,100张 | 无人机巡检/智能运维 | 点击查看 |
| 🚦交通标志检测数据集 | 1866张 | 智能驾驶系统/地图数据更新 | 点击查看 |
| 🚧 道路交通标志检测数据集 | 2,000张 | 智能地图与导航/交通监控与执法 | 点击查看 |
| 😷 口罩检测数据集 | 1,600张 | 疫情防控管理/智能门禁系统 | 点击查看 |
| 🦌 野生动物检测数据集 | 5,138张 | 野生动物保护监测/智能狩猎相机系统 | 点击查看 |
| 🍎 水果识别数据集 | 2,611张 | 图片智能零售/智慧农业 | 点击查看 |
| 🚁 无人机目标检测数据集 | 14,751张 | 无人机检测/航拍图像 | 点击查看 |
| 🚬 吸烟行为检测数据集 | 2,108张 | 公共场所禁烟监控/健康行为研究 | 点击查看 |
| 🛣️ 道路坑洞检测数据集 | 8,300张 | 智能道路巡检系统/车载安全监测设备 | 点击查看 |
| 🛠️ 井盖识别数据集 | 2,700 张 | 道路巡检 智能城市 | 点击查看 |
| 🧯 消防器材检测数据集 | 9,600 张 | 智慧安防系统 自动审核系统 | 点击查看 |
| 📱 手机通话检测数据集 | 3,100张 | 智能监控系统 驾驶安全监控 | 点击查看 |
| 🚜 建筑工地车辆检测数据集 | 28,000 张 | 施工现场安全监控 智能工地管理系统 | 点击查看 |
| 🏊 游泳人员检测数据集 | 4,500 张 | 游泳池安全监控 海滩救生系统 | 点击查看 |
| 🌿 植物病害检测数据集 | 6,200 张 | 智能农业监测系统 家庭园艺助手 | 点击查看 |
| 🐦 鸟类计算机视觉数据集 | 6,200 张 | 鸟类保护监测 生态环境评估 | 点击查看 |
| 🚁 无人机计算机视觉数据集 | 7,000 张 | 空域安全监管 无人机反制系统 | 点击查看 |
| 🛡️ Aerial_Tank_Images 坦克目标检测数据集 | 2,200 张 | 军事目标识别与侦查 卫星遥感目标识别 | 点击查看 |
| ♻️ 塑料可回收物检测数据集 | 10,000 张 | 智能垃圾分类系统 环保回收自动化 | 点击查看 |
| 🏢 建筑物实例分割数据集 | 9,700 张 | 城市规划与发展 智慧城市管理 | 点击查看 |
| 😊 人脸情绪检测数据集 | 9,400 张 | 智能客服系统 在线教育平台 | 点击查看 |
| 🔍 红外人员车辆检测数据集 | 53,000 张 | 智能安防监控系统 边境安全防控 | 点击查看 |
| 🚗 停车空间检测数据集 | 3,100 张 | 实时车位导航系统 智能停车收费管理 | 点击查看 |
| ♻ 垃圾分类检测数据集 | 15,000 张 | 智能垃圾分类 回收站与环保设施自动化 | 点击查看 |
| ✂️ 石头剪刀布手势识别数据集 | 3,100 张 | 智能游戏系统 人机交互界面 | 点击查看 |
| 🍌 腐烂香蕉检测数据集 | 4,267张 | 食品质量检测 智能农产品分拣系统 | 点击查看 |
| 🎰 扑克牌数字检测数据集 | 6,240 张 | 智能扑克游戏系统 赌场监控与安全 | 点击查看 |
| 🚗 车牌识别数据集 | 12,658张 | 智能交通管理系统 停车场自动化管理 | 点击查看 |
| 🏗️ 建筑设备检测数据集 | 6,247张 | 智能工地管理 施工安全监控 | 点击查看 |
| 🦺 个人防护装备检测数据集 | 7,892 张 | 工业安全监控 建筑工地安全管理 | 点击查看 |
| ⚓ 船舶检测数据集 | 7,542张 | 海洋交通监管 港口智能化管理 | 点击查看 |
| 🚁 空中救援任务数据集 | 6,742张 | 自然灾害应急救援 海上搜救任务 | 点击查看 |
| ✈️ 固定翼无人机检测数据集 | 8,247张 | 空域安全监管 机场反无人机系统 | 点击查看 |
| 😷 口罩检测数据集 | 8,432张 | 公共场所监控系统 企业复工防疫管理 | 点击查看 |
| 🚁 无人机检测数据集 | 6,847张 | 机场空域安全管理 重要设施防护监控 | 点击查看 |
| ✂️ 剪刀石头布手势识别数据集 | 2,376张 | 智能游戏开发 儿童教育娱乐 | 点击查看 |
| 🦺 安全背心识别数据集 | 4,892张 | 建筑工地安全监管 工业园区智能巡检 | 点击查看 |
| 🥤 饮料容器材质检测数据集 | 6,342张 | 智能垃圾分拣系统 生产线质量检测 | 点击查看 |
| 🚚 物流运输场景数据集 | 7,854张 | 智能仓储管理系统 物流车队智能调度 | 点击查看 |
| 🌡️ 热成像数据集 | 9,127张 | 夜间安防监控 工业设备检测 | 点击查看 |
| 🚗 车辆损伤识别数据集 | 6,742 张 | 保险理赔自动化 智能汽车维修评估 | 点击查看 |
| 🃏 扑克牌牌面识别数据集 | 8,432 张 | 智能扑克游戏系统 线上扑克直播辅助 | 点击查看 |
| 🔴 围棋棋子检测数据集 | 8,247 张 | 智能围棋对弈系统 围棋教学平台 | 点击查看 |
| 🚀 火箭检测数据集 | 6,425 张 | 航天发射监测 军事情报分析 | 点击查看 |
| ⚡ 摔跤跌倒检测数据集 | 9,354 张 | 体育安全监测系统 智能运动防护设备 | 点击查看 |
| 🚗 PKLot停车位检测数据集 | 12,416 张 | 计算机视觉 停车位检测 | 点击查看 |
| 🚗 车辆分类数据集 | 28,045 张 | 车辆识别 交通工具 | 点击查看 |
| 🚦 道路标识检测数据集 | 2,893 张 | 道路标识识别 自动驾驶 | 点击查看 |
| 📦 集装箱侧面分类数据集 | 2,408 张 | 集装箱识别 港口物流 | 点击查看 |
| 🚦 交通与道路标识检测数据集 | 10,000张 | 交通标志识别 自动驾驶 | 点击查看 |
| 🎯 COCO数据集 | 123,272张 | 目标检测 COCO | 点击查看 |
| 👥 人群检测数据集 | 7,300张 | 人流统计 行人检测 | 点击查看 |
| 🔢 MNIST手写数字识别数据集 | 70,000张 | 图像分类 手写识别 | 点击查看 |
| 🐦 鸟类物种识别数据集 | 9,880张 | 鸟类识别 生态保护 | 点击查看 |
| 🩺 皮肤癌检测数据集 | 9,900张 | 皮肤癌检测 医学影像 | 点击查看 |
| 🚗 汽车颜色分类数据集 | 2,004张 | 汽车识别 颜色检测 | 点击查看 |
| ⚔️ 暴力与非暴力行为识别数据集 | 10,000张 | 行为识别 暴力检测 | 点击查看 |
| 🌿 植物病害检测数据集 | 5,500张 | 农业AI 植物病害识别 | 点击查看 |
| 🧠 脑肿瘤检测数据集 | 9,900张 | 医学影像 脑肿瘤识别 | 点击查看 |
| 🏀 篮球场景目标检测数据集 | 4,100张 | 体育AI 篮球分析 | 点击查看 |
| ⚽ 足球场景目标检测数据集 | 6,700张 | 体育AI 足球分析 | 点击查看 |
| 🗑️ 垃圾分类检测数据集 | 10,464张 | 垃圾分类 环保科技 | 点击查看 |
| 🚁 无人机检测数据集 | 9,495张 | 无人机识别 低空安全 | 点击查看 |
| 😊 人类面部情绪识别数据集 | 9,400张 | 情绪识别 人脸识别 | 点击查看 |
| 🔥 烟雾与火灾检测数据集 | 536张 | 火灾检测 烟雾识别 | 点击查看 |
| 🔥 火灾检测计算机视觉数据集 | 10,967张 | 火灾检测 火灾预警 | 点击查看 |
| 🌐 网站截图计算机视觉数据集 | 1,286张 | 网页分析 UI自动化 | 点击查看 |
| 🛣️ 车道线实例分割数据集 | 1,610张 | 车道线检测 自动驾驶 | 点击查看 |
| 🛣️ 道路实例分割数据集 | 1,114张 | 实例分割 道路检测 | 点击查看 |
| 🚗 汽车损伤检测数据集 | 4500张 | 汽车损伤识别 保险定损 | 点击查看 |
| 🏗️ 建筑物实例分割数据集 | 9,700张 | 遥感图像 建筑物提取 | 点击查看 |
| 🥚 CVR EGG 实例分割数据集 | 1,438张 | 禽蛋检测 农业AI | 点击查看 |
| 🚪 房间检测计算机视觉数据集 | 1,272张 | 实例分割 建筑图纸识别 | 点击查看 |
| 💅 美甲实例分割数据集 | 3,626张 | 美甲识别 虚拟试妆 | 点击查看 |
| 🚗 汽车损伤严重程度分割数据集 | 2,485张 | 汽车损伤检测 保险定损 | 点击查看 |
| 🪵 木材缺陷检测数据集 | 10,000张 | 木材缺陷检测 工业质检 | 点击查看 |
| 🧑🦯 人体姿态与行为实例分割数据集 | 4,567张 | 人体姿态识别 行为分析 | 点击查看 |
| 📦 条形码检测数据集 | 9,988张 | 条形码识别 零售自动化 | 点击查看 |
| 🚗 道路车辆检测数据集 | 4,058张 | 自动驾驶 车辆识别 | 点击查看 |
| 🎮 麻将计算机视觉模型数据集 | 212张 | 麻将识别 游戏AI | 点击查看 |
| 🛡️ 个人防护装备检测数据集 | 12,879张 | 安全生产 工业AI | 点击查看 |
| 🅰️ OCR字符检测数据集 | 12,879张 | OCR字符检测 车牌识别 | 点击查看 |
| 🔫 武器检测数据集 | 9,672 张 | 武器识别 公共安全 | 点击查看 |
| 🔥 火灾检测数据集 | 8,939 张 | 火灾识别 消防安全 | 点击查看 |
| 🧱 墙体检测计算机视觉数据集 | 6,646 张 | 墙体识别 建筑图纸解析 | 点击查看 |
| 🩸 肝病细胞检测数据集 | 105 张 | 细胞识别 数字病理 | 点击查看 |
| 🚗 CCTV车辆与摩托车检测数据集 | 1,023 张 | 车辆识别 摩托车检测 | 点击查看 |
| 🍅 番茄叶片病害检测数据集 | 4,132 张 | 植物病害识别 智慧农业 | 点击查看 |
| 🔥 火灾与烟雾检测数据集 | 8,875 张 | 火灾识别 烟雾检测 | 点击查看 |
| 🎮 CSGO 游戏目标检测数据集 | 2,427张 | 游戏AI CSGO | 点击查看 |
| 🚬 吸烟行为检测数据集 | 3,895张 | 吸烟行为识别 公共健康 | 点击查看 |
| 🔪 刀具检测数据集 | 9,219张 | 刀具识别 枪械检测 | 点击查看 |
| 🐾 动物目标检测数据集 | 1,000张 | 动物识别 智能农场 | 点击查看 |
| 🃏 扑克牌检测数据集 | 1,300张 | 扑克牌识别 游戏AI | 点击查看 |
| 🚨 跌倒检测数据集 | 4,600张 | 跌倒检测 行为识别 | 点击查看 |
📌 每篇文章附带模型指标、训练思路与推理部署建议,欢迎点赞收藏支持~
🛡️ 军用车辆检测数据集介绍-3,143张图片

🛡️ 军用车辆检测数据集介绍
📌 数据集概览
本项目是专注于军用车辆目标检测的计算机视觉数据集,共包含约 3,143 张图像,主要用于训练深度学习模型在野外、战场、边境、训练场等复杂环境下识别和定位多种军事装备与人员,提升智能监控与态势感知能力。
- 图像数量:3,143 张
- 类别数:16 类
- 适用任务:目标检测(Object Detection)
- 适配模型:YOLOv5、YOLOv8、Faster R-CNN、SSD 等主流框架
包含类别
| 类别 | 英文名称 | 描述 |
|---|---|---|
| 坦克 | Tank | 主战坦克或轻型装甲车辆 |
| 装甲车 | Armored Car | 轮式或履带式装甲运兵车 |
| 卡车 | Truck | 军用运输卡车或后勤保障车辆 |
| 人员 | Person | 单兵或小队士兵 |
| 战壕 | Trench | 防御工事或掩体结构 |
| 飞机 | Plane | 军用固定翼或旋翼飞行器 |
| 火炮 | Artillery | 自行火炮或牵引式火炮系统 |
| 工程车 | Engineering Vehicle | 推土机、架桥车等支援车辆 |
| 导弹发射车 | Missile Launcher | 移动式导弹发射平台 |
| 侦察车 | Recon Vehicle | 轻型侦察或指挥车辆 |
| 无人机 | UAV | 地面起降或空中悬停的无人飞行器 |
| 通信车 | Command Vehicle | 指挥通信节点车辆 |
| 防空系统 | Air Defense System | 雷达车或防空导弹发射车 |
| 后勤车 | Logistics Vehicle | 补给、油料、医疗支援车辆 |
| 装备箱 | Equipment Crate | 地面部署的武器或物资箱体 |
| 伪装网 | Camouflage Net | 用于遮蔽目标的伪装设施 |
数据集覆盖现代陆地作战中常见的军事目标类型,能够显著提升模型在低可见度、远距离、复杂地形下的目标识别与分类准确性。
🎯 应用场景
该数据集非常适用于以下场景与研究方向:
-
边境与国土安全监控
自动识别非法越境车辆或可疑军事目标,辅助边防部队快速响应。 -
战场态势感知系统
在无人机、卫星或地面传感器图像中实时标注敌我装备位置,支持指挥决策。 -
军事训练模拟评估
对演习视频自动分析参演单位分布、装备移动轨迹及战术行为。 -
智能侦察与预警平台
集成至侦察无人机或固定监控点,实现全天候自动化目标发现与告警。 -
国防科技研发支持
为自主导航、目标跟踪、多模态融合等前沿技术提供高质量训练数据。 -
应急响应与灾害救援
在灾难现场快速识别军用救援车辆、工程设备或被困人员。
🖼 数据样本展示
以下展示部分数据集内的样本图片(均带有目标检测框):


数据集包含多种真实军事环境下的图像:
- 远距离拍摄:从高空或长焦镜头获取的小目标图像
- 复杂背景干扰:树林、山地、沙漠、雪地、城市废墟等多样化地形
- 不同天气条件:雨雾、沙尘、夜间、低光照等恶劣环境
- 多角度与姿态:正面、侧面、俯视、倾斜等多种观察视角
- 遮挡与重叠:车辆被植被、建筑物或其它装备部分遮挡的复杂场景
场景涵盖昼夜不同时段、多种地理区域、不同季节和气候条件,数据多样性优秀,特别适合训练鲁棒性强的军用车辆检测模型。
使用建议
-
数据预处理优化
- 针对低分辨率图像进行超分重建或锐化增强
- 统一图像尺寸(推荐640x640或1024x1024)
- 应用适合野外环境的数据增强:模糊、噪声注入、亮度调整、随机裁剪
-
模型训练策略
- 使用COCO或VisDrone预训练权重进行迁移学习
- 启用多尺度训练以应对不同大小的目标(尤其是远距离小目标)
- 可结合注意力机制(如CBAM、SE)提升对关键区域的关注度
-
实际部署考虑
- 边缘设备优化:针对无人机、车载终端或单兵设备进行模型轻量化
- 实时推理能力:优化帧率以支持视频流中连续检测
- 低功耗设计:考虑电池供电设备的能耗限制与热管理
-
应用场景适配
- 无人机集成:与航拍系统无缝对接,实现实时目标识别与地图标注
- 移动端部署:支持前线士兵通过平板或AR眼镜查看目标信息
- 云端批处理:用于大规模侦察影像的批量分析与情报提取
-
性能监控与改进
- 建立不同遮挡程度、光照条件、目标距离下的性能基准测试
- 收集困难样本(如伪装目标、极端天气、高速移动)进行针对性强化训练
- 定期更新模型以适应新型装备、战术变化或新地理区域需求
🌟 数据集特色
- 高质量标注:由具备军事背景的专业人员参与标注,确保语义准确性
- 环境多样性:涵盖山地、平原、丛林、城市、沙漠等多种作战地形
- 时间跨度广:包含不同季节、时间段、训练与实战场景数据
- 技术兼容性:支持主流深度学习框架及部署平台(包括ONNX、TensorRT)
- 持续扩展:定期增加新装备类型、新国家制式或更多战术场景
📈 商业价值
该数据集在以下商业领域具有重要价值:
- 国防科技企业:提升智能侦察、目标识别与战场管理系统性能
- 安防监控厂商:开发面向政府与军队的高精度监控解决方案
- 无人机制造商:增强产品在军事与准军事任务中的自主识别能力
- 仿真与训练公司:构建高保真虚拟战场环境与AI对手系统
- 地理信息服务商:支持军事地理信息系统(MGIS)的数据标注与分析
🔗 技术标签
计算机视觉 目标检测 军用车辆识别 战场感知 YOLO 智能监控 边缘计算 无人机应用 国防科技 态势感知
注意: 本数据集适用于研究、教育和商业用途。使用时请遵守国家安全与出口管制相关法律法规,确保数据使用符合国际规范与伦理要求。建议在实际部署前进行充分的安全审查与本地合规性评估。
YOLOv8 训练实战
本教程介绍如何使用 YOLOv8 对目标进行识别与检测。涵盖环境配置、数据准备、训练模型、模型推理和部署等全过程。
📦 1. 环境配置
建议使用 Python 3.8+,并确保支持 CUDA 的 GPU 环境。
# 创建并激活虚拟环境(可选)
python -m venv yolov8_env
source yolov8_env/bin/activate # Windows 用户使用 yolov8_env\Scripts\activate
安装 YOLOv8 官方库 ultralytics
pip install ultralytics
📁 2. 数据准备
2.1 数据标注格式(YOLO)
每张图像对应一个 .txt 文件,每行代表一个目标,格式如下:
<class_id> <x_center> <y_center> <width> <height>
所有值为相对比例(0~1)。
类别编号从 0 开始。
2.2 文件结构示例
datasets/
├── images/
│ ├── train/
│ └── val/
├── labels/
│ ├── train/
│ └── val/
2.3 创建 data.yaml 配置文件
path: ./datasets
train: images/train
val: images/val
nc: 11
names: ['Bent_Insulator', 'Broken_Insulator_Cap', '', ...]
🚀 3. 模型训练
YOLOv8 提供多种模型:yolov8n, yolov8s, yolov8m, yolov8l, yolov8x。可根据设备性能选择。
yolo detect train \
model=yolov8s.pt \
data=./data.yaml \
imgsz=640 \
epochs=50 \
batch=16 \
project=weed_detection \
name=yolov8s_crop_weed
| 参数 | 类型 | 默认值 | 说明 |
|---|---|---|---|
model | 字符串 | - | 指定基础模型架构文件或预训练权重文件路径(.pt/.yaml) |
data | 字符串 | - | 数据集配置文件路径(YAML 格式),包含训练/验证路径和类别定义 |
imgsz | 整数 | 640 | 输入图像的尺寸(像素),推荐正方形尺寸(如 640x640) |
epochs | 整数 | 100 | 训练总轮次,50 表示整个数据集会被迭代 50 次 |
batch | 整数 | 16 | 每个批次的样本数量,值越大需要越多显存 |
project | 字符串 | - | 项目根目录名称,所有输出文件(权重/日志等)将保存在此目录下 |
name | 字符串 | - | 实验名称,用于在项目目录下创建子文件夹存放本次训练结果 |
关键参数补充说明:
-
model=yolov8s.pt- 使用预训练的 YOLOv8 small 版本(平衡速度与精度)
- 可用选项:
yolov8n.pt(nano)/yolov8m.pt(medium)/yolov8l.pt(large)
-
data=./data.yaml# 典型 data.yaml 结构示例 path: ../datasets/weeds train: images/train val: images/val names: 0: Bent_Insulator 1: Broken_Insulator_Cap 2: ... 3: ...
📈 4. 模型验证与测试
4.1 验证模型性能
yolo detect val \
model=runs/detect/yolov8s_crop_weed/weights/best.pt \
data=./data.yaml
| 参数 | 类型 | 必需 | 说明 |
|---|---|---|---|
model | 字符串 | 是 | 要验证的模型权重路径(通常为训练生成的 best.pt 或 last.pt) |
data | 字符串 | 是 | 与训练时相同的 YAML 配置文件路径,需包含验证集路径和类别定义 |
关键参数详解
-
model=runs/detect/yolov8s_crop_weed/weights/best.pt- 使用训练过程中在验证集表现最好的模型权重(
best.pt) - 替代选项:
last.pt(最终epoch的权重) - 路径结构说明:
runs/detect/ └── [训练任务名称]/ └── weights/ ├── best.pt # 验证指标最优的模型 └── last.pt # 最后一个epoch的模型
- 使用训练过程中在验证集表现最好的模型权重(
-
data=./data.yaml- 必须与训练时使用的配置文件一致
- 确保验证集路径正确:
val: images/val # 验证集图片路径 names: 0: crop 1: weed
常用可选参数
| 参数 | 示例值 | 作用 |
|---|---|---|
batch | 16 | 验证时的批次大小 |
imgsz | 640 | 输入图像尺寸(需与训练一致) |
conf | 0.25 | 置信度阈值(0-1) |
iou | 0.7 | NMS的IoU阈值 |
device | 0/cpu | 选择计算设备 |
save_json | True | 保存结果为JSON文件 |
典型输出指标
Class Images Instances P R mAP50 mAP50-95
all 100 752 0.891 0.867 0.904 0.672
crop 100 412 0.912 0.901 0.927 0.701
weed 100 340 0.870 0.833 0.881 0.643
4.2 推理测试图像
yolo detect predict \
model=runs/detect/yolov8s_crop_weed/weights/best.pt \
source=./datasets/images/val \
save=True
🧠 5. 自定义推理脚本(Python)
from ultralytics import YOLO
import cv2
# 加载模型
model = YOLO('runs/detect/yolov8s_crop_weed/weights/best.pt')
# 推理图像
results = model('test.jpg')
# 可视化并保存结果
results[0].show()
results[0].save(filename='result.jpg')
🛠 6. 部署建议
✅ 本地运行:通过 Python 脚本直接推理。
🌐 Web API:可用 Flask/FastAPI 搭建检测接口。
📦 边缘部署:YOLOv8 支持导出为 ONNX,便于在 Jetson、RKNN 等平台上部署。
导出示例:
yolo export model=best.pt format=onnx
📌 总结流程
| 阶段 | 内容 |
|---|---|
| ✅ 环境配置 | 安装 ultralytics, PyTorch 等依赖 |
| ✅ 数据准备 | 标注图片、组织数据集结构、配置 YAML |
| ✅ 模型训练 | 使用命令行开始训练 YOLOv8 模型 |
| ✅ 验证评估 | 检查模型准确率、mAP 等性能指标 |
| ✅ 推理测试 | 运行模型检测实际图像目标 |
| ✅ 高级部署 | 导出模型,部署到 Web 或边缘设备 |
2220

被折叠的 条评论
为什么被折叠?



