🩸 肝病细胞检测数据集-105张图片-文章末添加wx领取数据集

📦 已发布目标检测数据集合集(持续更新)
| 数据集名称 | 图像数量 | 应用方向 | 博客链接 |
|---|---|---|---|
| 🔌 电网巡检检测数据集 | 1600 张 | 电力设备目标检测 | 点击查看 |
| 🔥 火焰 / 烟雾 / 人检测数据集 | 10000张 | 安防监控,多目标检测 | 点击查看 |
| 🚗 高质量车牌识别数据集 | 10,000 张 | 交通监控 / 车牌识别 | 点击查看 |
| 🌿 农田杂草航拍检测数据集 | 1,200 张 | 农业智能巡检 | 点击查看 |
| 🐑 航拍绵羊检测数据集 | 1,700 张 | 畜牧监控 / 航拍检测 | 点击查看 |
| 🌡️ 热成像人体检测数据集 | 15,000 张 | 热成像下的行人检测 | 点击查看 |
| 🦺 安全背心检测数据集 | 3,897 张 | 工地安全 / PPE识别 | 点击查看 |
| 🚀 火箭检测数据集介绍 | 12,000 张 | 智慧医疗 / 养老护理 | 点击查看 |
| ⚡ 绝缘子故障检测数据集 | 2,100张 | 无人机巡检/智能运维 | 点击查看 |
| 🚦交通标志检测数据集 | 1866张 | 智能驾驶系统/地图数据更新 | 点击查看 |
| 🚧 道路交通标志检测数据集 | 2,000张 | 智能地图与导航/交通监控与执法 | 点击查看 |
| 😷 口罩检测数据集 | 1,600张 | 疫情防控管理/智能门禁系统 | 点击查看 |
| 🦌 野生动物检测数据集 | 5,138张 | 野生动物保护监测/智能狩猎相机系统 | 点击查看 |
| 🍎 水果识别数据集 | 2,611张 | 图片智能零售/智慧农业 | 点击查看 |
| 🚁 无人机目标检测数据集 | 14,751张 | 无人机检测/航拍图像 | 点击查看 |
| 🚬 吸烟行为检测数据集 | 2,108张 | 公共场所禁烟监控/健康行为研究 | 点击查看 |
| 🛣️ 道路坑洞检测数据集 | 8,300张 | 智能道路巡检系统/车载安全监测设备 | 点击查看 |
| 🛠️ 井盖识别数据集 | 2,700 张 | 道路巡检 智能城市 | 点击查看 |
| 🧯 消防器材检测数据集 | 9,600 张 | 智慧安防系统 自动审核系统 | 点击查看 |
| 📱 手机通话检测数据集 | 3,100张 | 智能监控系统 驾驶安全监控 | 点击查看 |
| 🚜 建筑工地车辆检测数据集 | 28,000 张 | 施工现场安全监控 智能工地管理系统 | 点击查看 |
| 🏊 游泳人员检测数据集 | 4,500 张 | 游泳池安全监控 海滩救生系统 | 点击查看 |
| 🌿 植物病害检测数据集 | 6,200 张 | 智能农业监测系统 家庭园艺助手 | 点击查看 |
| 🐦 鸟类计算机视觉数据集 | 6,200 张 | 鸟类保护监测 生态环境评估 | 点击查看 |
| 🚁 无人机计算机视觉数据集 | 7,000 张 | 空域安全监管 无人机反制系统 | 点击查看 |
| 🛡️ Aerial_Tank_Images 坦克目标检测数据集 | 2,200 张 | 军事目标识别与侦查 卫星遥感目标识别 | 点击查看 |
| ♻️ 塑料可回收物检测数据集 | 10,000 张 | 智能垃圾分类系统 环保回收自动化 | 点击查看 |
| 🏢 建筑物实例分割数据集 | 9,700 张 | 城市规划与发展 智慧城市管理 | 点击查看 |
| 😊 人脸情绪检测数据集 | 9,400 张 | 智能客服系统 在线教育平台 | 点击查看 |
| 🔍 红外人员车辆检测数据集 | 53,000 张 | 智能安防监控系统 边境安全防控 | 点击查看 |
| 🚗 停车空间检测数据集 | 3,100 张 | 实时车位导航系统 智能停车收费管理 | 点击查看 |
| ♻ 垃圾分类检测数据集 | 15,000 张 | 智能垃圾分类 回收站与环保设施自动化 | 点击查看 |
| ✂️ 石头剪刀布手势识别数据集 | 3,100 张 | 智能游戏系统 人机交互界面 | 点击查看 |
| 🍌 腐烂香蕉检测数据集 | 4,267张 | 食品质量检测 智能农产品分拣系统 | 点击查看 |
| 🎰 扑克牌数字检测数据集 | 6,240 张 | 智能扑克游戏系统 赌场监控与安全 | 点击查看 |
| 🚗 车牌识别数据集 | 12,658张 | 智能交通管理系统 停车场自动化管理 | 点击查看 |
| 🏗️ 建筑设备检测数据集 | 6,247张 | 智能工地管理 施工安全监控 | 点击查看 |
| 🦺 个人防护装备检测数据集 | 7,892 张 | 工业安全监控 建筑工地安全管理 | 点击查看 |
| ⚓ 船舶检测数据集 | 7,542张 | 海洋交通监管 港口智能化管理 | 点击查看 |
| 🚁 空中救援任务数据集 | 6,742张 | 自然灾害应急救援 海上搜救任务 | 点击查看 |
| ✈️ 固定翼无人机检测数据集 | 8,247张 | 空域安全监管 机场反无人机系统 | 点击查看 |
| 😷 口罩检测数据集 | 8,432张 | 公共场所监控系统 企业复工防疫管理 | 点击查看 |
| 🚁 无人机检测数据集 | 6,847张 | 机场空域安全管理 重要设施防护监控 | 点击查看 |
| ✂️ 剪刀石头布手势识别数据集 | 2,376张 | 智能游戏开发 儿童教育娱乐 | 点击查看 |
| 🦺 安全背心识别数据集 | 4,892张 | 建筑工地安全监管 工业园区智能巡检 | 点击查看 |
| 🥤 饮料容器材质检测数据集 | 6,342张 | 智能垃圾分拣系统 生产线质量检测 | 点击查看 |
| 🚚 物流运输场景数据集 | 7,854张 | 智能仓储管理系统 物流车队智能调度 | 点击查看 |
| 🌡️ 热成像数据集 | 9,127张 | 夜间安防监控 工业设备检测 | 点击查看 |
| 🚗 车辆损伤识别数据集 | 6,742 张 | 保险理赔自动化 智能汽车维修评估 | 点击查看 |
| 🃏 扑克牌牌面识别数据集 | 8,432 张 | 智能扑克游戏系统 线上扑克直播辅助 | 点击查看 |
| 🔴 围棋棋子检测数据集 | 8,247 张 | 智能围棋对弈系统 围棋教学平台 | 点击查看 |
| 🚀 火箭检测数据集 | 6,425 张 | 航天发射监测 军事情报分析 | 点击查看 |
| ⚡ 摔跤跌倒检测数据集 | 9,354 张 | 体育安全监测系统 智能运动防护设备 | 点击查看 |
| 🚗 PKLot停车位检测数据集 | 12,416 张 | 计算机视觉 停车位检测 | 点击查看 |
| 🚗 车辆分类数据集 | 28,045 张 | 车辆识别 交通工具 | 点击查看 |
| 🚦 道路标识检测数据集 | 2,893 张 | 道路标识识别 自动驾驶 | 点击查看 |
| 📦 集装箱侧面分类数据集 | 2,408 张 | 集装箱识别 港口物流 | 点击查看 |
| 🚦 交通与道路标识检测数据集 | 10,000张 | 交通标志识别 自动驾驶 | 点击查看 |
| 🎯 COCO数据集 | 123,272张 | 目标检测 COCO | 点击查看 |
| 👥 人群检测数据集 | 7,300张 | 人流统计 行人检测 | 点击查看 |
| 🔢 MNIST手写数字识别数据集 | 70,000张 | 图像分类 手写识别 | 点击查看 |
| 🐦 鸟类物种识别数据集 | 9,880张 | 鸟类识别 生态保护 | 点击查看 |
| 🩺 皮肤癌检测数据集 | 9,900张 | 皮肤癌检测 医学影像 | 点击查看 |
| 🚗 汽车颜色分类数据集 | 2,004张 | 汽车识别 颜色检测 | 点击查看 |
| ⚔️ 暴力与非暴力行为识别数据集 | 10,000张 | 行为识别 暴力检测 | 点击查看 |
| 🌿 植物病害检测数据集 | 5,500张 | 农业AI 植物病害识别 | 点击查看 |
| 🧠 脑肿瘤检测数据集 | 9,900张 | 医学影像 脑肿瘤识别 | 点击查看 |
| 🏀 篮球场景目标检测数据集 | 4,100张 | 体育AI 篮球分析 | 点击查看 |
| ⚽ 足球场景目标检测数据集 | 6,700张 | 体育AI 足球分析 | 点击查看 |
| 🗑️ 垃圾分类检测数据集 | 10,464张 | 垃圾分类 环保科技 | 点击查看 |
| 🚁 无人机检测数据集 | 9,495张 | 无人机识别 低空安全 | 点击查看 |
| 😊 人类面部情绪识别数据集 | 9,400张 | 情绪识别 人脸识别 | 点击查看 |
| 🔥 烟雾与火灾检测数据集 | 536张 | 火灾检测 烟雾识别 | 点击查看 |
| 🔥 火灾检测计算机视觉数据集 | 10,967张 | 火灾检测 火灾预警 | 点击查看 |
| 🌐 网站截图计算机视觉数据集 | 1,286张 | 网页分析 UI自动化 | 点击查看 |
| 🛣️ 车道线实例分割数据集 | 1,610张 | 车道线检测 自动驾驶 | 点击查看 |
| 🛣️ 道路实例分割数据集 | 1,114张 | 实例分割 道路检测 | 点击查看 |
| 🚗 汽车损伤检测数据集 | 4500张 | 汽车损伤识别 保险定损 | 点击查看 |
| 🏗️ 建筑物实例分割数据集 | 9,700张 | 遥感图像 建筑物提取 | 点击查看 |
| 🥚 CVR EGG 实例分割数据集 | 1,438张 | 禽蛋检测 农业AI | 点击查看 |
| 🚪 房间检测计算机视觉数据集 | 1,272张 | 实例分割 建筑图纸识别 | 点击查看 |
| 💅 美甲实例分割数据集 | 3,626张 | 美甲识别 虚拟试妆 | 点击查看 |
| 🚗 汽车损伤严重程度分割数据集 | 2,485张 | 汽车损伤检测 保险定损 | 点击查看 |
| 🪵 木材缺陷检测数据集 | 10,000张 | 木材缺陷检测 工业质检 | 点击查看 |
| 🧑🦯 人体姿态与行为实例分割数据集 | 4,567张 | 人体姿态识别 行为分析 | 点击查看 |
| 📦 条形码检测数据集 | 9,988张 | 条形码识别 零售自动化 | 点击查看 |
| 🚗 道路车辆检测数据集 | 4,058张 | 自动驾驶 车辆识别 | 点击查看 |
| 🎮 麻将计算机视觉模型数据集 | 212张 | 麻将识别 游戏AI | 点击查看 |
| 🛡️ 个人防护装备检测数据集 | 12,879张 | 安全生产 工业AI | 点击查看 |
| 🅰️ OCR字符检测数据集 | 12,879张 | OCR字符检测 车牌识别 | 点击查看 |
| 🔫 武器检测数据集 | 9,672 张 | 武器识别 公共安全 | 点击查看 |
| 🔥 火灾检测数据集 | 8,939 张 | 火灾识别 消防安全 | 点击查看 |
| 🧱 墙体检测计算机视觉数据集 | 6,646 张 | 墙体识别 建筑图纸解析 | 点击查看 |
📌 每篇文章附带模型指标、训练思路与推理部署建议,欢迎点赞收藏支持~
🩸 肝病细胞检测数据集介绍-105张图片

🩸 肝病细胞检测数据集介绍
📌 数据集概览
本项目是专注于肝病病理图像中异常细胞自动识别的计算机视觉数据集,共包含约 3976张高分辨率显微镜图像,主要用于训练深度学习模型在医学病理切片中精准定位和分类与肝病相关的异常细胞结构。
- 图像数量:3976 张
- 类别数:4类(Liver disease cells)
- 适用任务:目标检测(Object Detection) / 细胞实例分割(Cell Instance Segmentation)
- 适配模型:YOLOv5、YOLOv8、Faster R-CNN、Mask R-CNN、U-Net 等主流框架
包含类别
| 类别 | 英文名称 | 描述 |
|---|---|---|
| 肝病细胞 | Liver disease cells | 在肝组织切片中呈现异常形态或染色特征的病理细胞 |
数据集聚焦于肝病相关病理细胞的识别,可显著提升模型在辅助诊断、数字病理分析、科研自动化等场景下的细胞级检测能力。
🎯 应用场景
该数据集非常适用于以下场景与研究方向:
-
辅助病理诊断
自动标记肝病相关异常细胞,减轻病理医生工作负担,提高诊断效率与一致性。 -
数字病理平台开发
构建AI驱动的全玻片图像(WSI)分析系统,支持远程会诊与批量筛查。 -
药物研发与疗效评估
定量分析治疗前后肝组织中异常细胞的数量与分布变化,评估药物干预效果。 -
医学教育与培训
为医学生和住院医师提供标准化标注样本,用于学习肝病细胞形态学特征。 -
生物标志物发现
结合图像分析与组学数据,挖掘与肝病进展相关的关键细胞表型特征。 -
临床科研自动化
支持大规模回顾性研究,从历史病理切片中自动提取细胞级数据进行统计分析。
🖼 数据样本展示
以下展示部分数据集内的样本图片(均带有异常细胞检测框或分割掩码):


数据集包含多种真实病理切片环境下的图像:
- 高倍显微图像:40x 或 60x 放大倍率下的细胞级细节
- HE染色切片:标准苏木精-伊红染色,呈现典型病理形态
- 多类型肝病样本:涵盖脂肪肝、肝炎、肝硬化、肝癌前病变等
- 复杂背景干扰:包含正常肝细胞、血管、纤维组织等非目标结构
- 细胞密集区域:存在重叠、粘连、边界模糊等挑战性场景
图像分辨率高、标注精细,特别适合训练在真实临床病理环境中鲁棒性强的细胞检测模型。
使用建议
-
数据预处理优化
- 对HE染色图像进行色彩归一化、对比度增强、去噪处理
- 统一图像尺寸(推荐512x512或1024x1024),保留细胞细节
- 应用医学图像专用增强策略:弹性变形、局部亮度调整、模拟染色变异
-
模型训练策略
- 使用在病理图像数据集(如PanNuke、MoNuSeg)上预训练的权重迁移学习
- 针对细胞小目标特性,采用多尺度特征融合或FPN结构
- 考虑使用语义分割+后处理方式提升细胞边界精度
-
实际部署考虑
- 边缘设备优化:轻量化模型部署于病理扫描仪或移动终端
- 实时推理能力:优化模型速度以支持快速阅片与报告生成
- 合规性设计:符合医疗AI软件监管要求(如FDA、CE、NMPA)
-
应用场景适配
- 数字病理系统集成:嵌入到PathAI、Philips IntelliSite等平台
- 云端API服务:提供切片上传→识别→结果下载全流程服务
- 移动端App:支持医生现场拍照上传并获取初步分析结果
-
性能监控与改进
- 建立不同染色质量、切片厚度、放大倍率的性能基准测试
- 收集困难样本(如细胞重叠、低对比度、伪影干扰)进行强化训练
- 定期更新模型以适应新病理类型和更细粒度的细胞分类需求
🌟 数据集特色
- 高质量标注:由资深病理医生人工标注并审核,确保细胞定位准确
- 病理代表性:覆盖多种肝病类型与疾病阶段
- 图像分辨率高:显微镜级成像,保留细胞核、胞质等关键结构
- 技术兼容性:支持主流深度学习框架及医学影像分析工具
- 科研导向强:专为医学AI研究与临床转化设计
📈 商业价值
该数据集在以下商业领域具有重要价值:
- 数字病理公司:提升AI辅助诊断产品的细胞识别准确率
- 医药研发企业:加速肝病药物筛选与疗效评估流程
- 医院信息化厂商:构建智能病理报告系统,提高诊疗效率
- AI医疗创业公司:开发肝病专科AI诊断模块,切入细分市场
- 科研机构合作:作为基础数据集支持国家级肝病研究项目
🔗 技术标签
计算机视觉 目标检测 细胞识别 数字病理 肝病诊断 医学AI 实例分割 显微图像 HE染色 病理分析
注意: 本数据集适用于研究、教育和商业用途。使用时请遵守医疗数据隐私保护相关法律法规(如HIPAA、GDPR),建议在临床应用中结合专业病理医生意见进行结果验证。
YOLOv8 训练实战
本教程介绍如何使用 YOLOv8 对目标进行识别与检测。涵盖环境配置、数据准备、训练模型、模型推理和部署等全过程。
📦 1. 环境配置
建议使用 Python 3.8+,并确保支持 CUDA 的 GPU 环境。
# 创建并激活虚拟环境(可选)
python -m venv yolov8_env
source yolov8_env/bin/activate # Windows 用户使用 yolov8_env\Scripts\activate
安装 YOLOv8 官方库 ultralytics
pip install ultralytics
📁 2. 数据准备
2.1 数据标注格式(YOLO)
每张图像对应一个 .txt 文件,每行代表一个目标,格式如下:
<class_id> <x_center> <y_center> <width> <height>
所有值为相对比例(0~1)。
类别编号从 0 开始。
2.2 文件结构示例
datasets/
├── images/
│ ├── train/
│ └── val/
├── labels/
│ ├── train/
│ └── val/
2.3 创建 data.yaml 配置文件
path: ./datasets
train: images/train
val: images/val
nc: 11
names: ['Bent_Insulator', 'Broken_Insulator_Cap', '', ...]
🚀 3. 模型训练
YOLOv8 提供多种模型:yolov8n, yolov8s, yolov8m, yolov8l, yolov8x。可根据设备性能选择。
yolo detect train \
model=yolov8s.pt \
data=./data.yaml \
imgsz=640 \
epochs=50 \
batch=16 \
project=weed_detection \
name=yolov8s_crop_weed
| 参数 | 类型 | 默认值 | 说明 |
|---|---|---|---|
model | 字符串 | - | 指定基础模型架构文件或预训练权重文件路径(.pt/.yaml) |
data | 字符串 | - | 数据集配置文件路径(YAML 格式),包含训练/验证路径和类别定义 |
imgsz | 整数 | 640 | 输入图像的尺寸(像素),推荐正方形尺寸(如 640x640) |
epochs | 整数 | 100 | 训练总轮次,50 表示整个数据集会被迭代 50 次 |
batch | 整数 | 16 | 每个批次的样本数量,值越大需要越多显存 |
project | 字符串 | - | 项目根目录名称,所有输出文件(权重/日志等)将保存在此目录下 |
name | 字符串 | - | 实验名称,用于在项目目录下创建子文件夹存放本次训练结果 |
关键参数补充说明:
-
model=yolov8s.pt- 使用预训练的 YOLOv8 small 版本(平衡速度与精度)
- 可用选项:
yolov8n.pt(nano)/yolov8m.pt(medium)/yolov8l.pt(large)
-
data=./data.yaml# 典型 data.yaml 结构示例 path: ../datasets/weeds train: images/train val: images/val names: 0: Bent_Insulator 1: Broken_Insulator_Cap 2: ... 3: ...
📈 4. 模型验证与测试
4.1 验证模型性能
yolo detect val \
model=runs/detect/yolov8s_crop_weed/weights/best.pt \
data=./data.yaml
| 参数 | 类型 | 必需 | 说明 |
|---|---|---|---|
model | 字符串 | 是 | 要验证的模型权重路径(通常为训练生成的 best.pt 或 last.pt) |
data | 字符串 | 是 | 与训练时相同的 YAML 配置文件路径,需包含验证集路径和类别定义 |
关键参数详解
-
model=runs/detect/yolov8s_crop_weed/weights/best.pt- 使用训练过程中在验证集表现最好的模型权重(
best.pt) - 替代选项:
last.pt(最终epoch的权重) - 路径结构说明:
runs/detect/ └── [训练任务名称]/ └── weights/ ├── best.pt # 验证指标最优的模型 └── last.pt # 最后一个epoch的模型
- 使用训练过程中在验证集表现最好的模型权重(
-
data=./data.yaml- 必须与训练时使用的配置文件一致
- 确保验证集路径正确:
val: images/val # 验证集图片路径 names: 0: crop 1: weed
常用可选参数
| 参数 | 示例值 | 作用 |
|---|---|---|
batch | 16 | 验证时的批次大小 |
imgsz | 640 | 输入图像尺寸(需与训练一致) |
conf | 0.25 | 置信度阈值(0-1) |
iou | 0.7 | NMS的IoU阈值 |
device | 0/cpu | 选择计算设备 |
save_json | True | 保存结果为JSON文件 |
典型输出指标
Class Images Instances P R mAP50 mAP50-95
all 100 752 0.891 0.867 0.904 0.672
crop 100 412 0.912 0.901 0.927 0.701
weed 100 340 0.870 0.833 0.881 0.643
4.2 推理测试图像
yolo detect predict \
model=runs/detect/yolov8s_crop_weed/weights/best.pt \
source=./datasets/images/val \
save=True
🧠 5. 自定义推理脚本(Python)
from ultralytics import YOLO
import cv2
# 加载模型
model = YOLO('runs/detect/yolov8s_crop_weed/weights/best.pt')
# 推理图像
results = model('test.jpg')
# 可视化并保存结果
results[0].show()
results[0].save(filename='result.jpg')
🛠 6. 部署建议
✅ 本地运行:通过 Python 脚本直接推理。
🌐 Web API:可用 Flask/FastAPI 搭建检测接口。
📦 边缘部署:YOLOv8 支持导出为 ONNX,便于在 Jetson、RKNN 等平台上部署。
导出示例:
yolo export model=best.pt format=onnx
📌 总结流程
| 阶段 | 内容 |
|---|---|
| ✅ 环境配置 | 安装 ultralytics, PyTorch 等依赖 |
| ✅ 数据准备 | 标注图片、组织数据集结构、配置 YAML |
| ✅ 模型训练 | 使用命令行开始训练 YOLOv8 模型 |
| ✅ 验证评估 | 检查模型准确率、mAP 等性能指标 |
| ✅ 推理测试 | 运行模型检测实际图像目标 |
| ✅ 高级部署 | 导出模型,部署到 Web 或边缘设备 |
1062

被折叠的 条评论
为什么被折叠?



