《TCP/IP Sockets 编程》笔记5

本文探讨了网络通信中协议的重要性及其如何规范信息的编码与传输。解释了平台概念及整型大小的确定方法,并讨论了C99标准中解决跨平台数据表示问题的方案。此外,还介绍了大端与小端字节序的概念,以及字符串处理和消息构建的相关细节。

第5章 发送和接收数据

 

There is nomagic: any programs that exchange information must agree on how that information will be encoded—represented as a sequence of bits—as well as which program sends what information when, and how the information
received affects the behavior of the program. This agreement regarding the form and meaning of information exchanged over a communication channel is called a protocol ;

 

 

 

平台(platform)的解释:

By “platform” in this book we mean the combination of compiler, operating system, and hardware architecture. The gcc compiler with the Linux operating system, running on Intel’s IA-32 architecture, is an example of a platform.

 

确定平台上整型的大小。

sizeof()需要注意的两件事:

第一,sizeof(char)总是1。因此,在C语言里,一个"byte"就是一个char类型变量占据的空间,sizeof()的单位其实是sizeof(char);

第二,预定义常量CHAR_BIT 决定C语言里一"byte"占据的位数。

Here are a couple of things to note about sizeof(). First, the language specifies that sizeof(char) is 1—always. Thus in the C language a “byte” is the amount of space occupied by a variable of type char, and the units of sizeof() are actually sizeof(char). But exactly how big is a C-language “byte”? That’s the second thing: the predefined constant CHAR_BIT tells how many bits it takes to represent a value of type —usually 8, but possibly 10 or even 32.

 

 

 

The C99 language standard specification offers a solution in the form of a set of optional types: int8_t, int16_t, int32_t, and int64_t (along with their unsigned counterparts uint8_t, etc) all have the size (in bits) indicated by their names. On a platform where CHAR_BIT is eight, these are 1, 2, 4 and 8 byte integers, respectively. Although these types may not be implemented on every platform, each is required to be defined if any native primitive type has
the corresponding size. (So if, say, the size of an int on the platform is 32 bits, the “optional” type int32_t is required to be defined.

 

Most protocols that send multibyte quantities in the Internet today use big-endian byte order; in fact, it is sometimes called network byte order. The byte order used by the hardware (whether it is big- or little-endian) is called the native byte order.

 

Addresses and ports that cross the Sockets API are always in network byte order.

 

 

 
size_t fwrite(const void * ptr, size_t size, size_t nmemb, FILE * stream)
size_t fread(void * ptr, size_t size, size_t nmemb, FILE * stream)

Note that the sizes are given in units of sizeof(char), while the return values of these methods are the number of objects read/written, not the number of bytes.

 

 

The C language rules for laying out data structures include specific alignment requirements, including that the fields within a structure begin on certain boundaries based on their type. The main points of the requirements can be summarized as follows:
1. Data structures are maximally aligned. That is, the address of any instance of a structure (including one in an array) will be divisible by the size of its largest native integer field.
2. Fields whose type is a multibyte integer type are aligned to their size (in bytes). Thus, an int32_t integer field’s beginning address is always divisible by four, and a uint16_t integer field’s address is guaranteed to be divisible by two.

To enforce these constraints, the compiler may add padding between the fields of a structure.

针对布置数据结构,C语言的规则包含特定的对齐要求,结构中的字段基于其类型开始于特定的边界。要点可以概括如下:

1.数据结构是最大化对齐的。一个结构任何实例(包括数组中的元素)的地址,可以被结构中最大整型字段的大小整除。

2.多字节整型字段与它们的大小对齐。因此,一个int32_t整型字段的开始地址总是能被4整除,一个unt16_t整型字段的地址则保证能被2整除。

 

Strings and Text

 

The C99 extensions standard defines a type wchar_t (“wide character”) to store characters from charsets that may use more than one byte per symbol. In addition, various library functions are defined that support conversion between byte sequences and arrays of wchar_t, in both directions. (In fact, there is a wide character string version of virtually every library function that operates on character strings.) To convert back and forth between wide strings
and encoded char (byte) sequences suitable for transmission over the network, we would use the wcstombs() (“wide character string to multibyte string”) and mbstowcs() functions.

 


#include <stdlib.h>
size_t wcstombs(char *restrict s, const wchar_t *restrict pwcs, size_t n);
size_t mbstowcs(wchar_t *restrict pwcs, const char *restrict s, size_t n);

 

 

The bad news is that C99’s wide character facilities are not designed to give the programmer explicit control over the encoding scheme. Indeed, they assume a single, fixed charset defined according to the “locale” of the platform. Although the facilities support a variety of charsets, they do not even provide the programmer any way to learn which charset or encoding is in use. In fact, the C99 standard states in several situations that the effect of changing the locale’s charset at runtime is undefined. What this means is that if you want to implement a protocol using a particular charset, you’ll have to implement the encoding yourself.

 

 

Constructing, Framing, and Parsing Messages

 

A clean design further decomposes the process into two parts. The first is concerned with framing, or marking the boundaries of the message, so the receiver can find it in the stream. The second is concerned with the actual encoding of the message, whether it is represented using text or binary data. Notice that these two parts can be independent of each other, and in a well-designed protocol they should be separated.

 

 

 

Two general techniques enable a receiver to unambiguously find the end of the message:

1. Delimiter-based: The end of the message is indicated by a unique marker, a particular, agreed-upon byte (or sequence of bytes) that the sender transmits immediately following the data.
2. Explicit length: The variable-length field or message is preceded by a length field that tells how many bytes it contains. The length field is generally of a fixed size; this limits the maximum size message that can be framed.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

源码来自:https://pan.quark.cn/s/7a757c0c80ca 《在Neovim中运用Lua的详尽教程》在当代文本编辑器领域,Neovim凭借其卓越的性能、可扩展性以及高度可定制的特点,赢得了程序开发者的广泛青睐。 其中,Lua语言的融入更是为Neovim注入了强大的活力。 本指南将深入剖析如何在Neovim中高效地运用Lua进行配置和插件开发,助你充分发挥这一先进功能的潜力。 一、Lua为何成为Neovim的优选方案经典的Vim脚本语言(Vimscript)虽然功能完备,但其语法结构与现代化编程语言相比显得较为复杂。 与此形成对比的是,Lua是一种精简、轻量且性能卓越的脚本语言,具备易于掌握、易于集成的特点。 因此,Neovim选择Lua作为其核心扩展语言,使得配置和插件开发过程变得更加直观和便捷。 二、安装与设置在Neovim中启用Lua支持通常十分简便,因为Lua是Neovim的固有组件。 然而,为了获得最佳体验,我们建议升级至Neovim的最新版本。 可以通过`vim-plug`或`dein.vim`等包管理工具来安装和管理Lua插件。 三、Lua基础在着手编写Neovim的Lua配置之前,需要对Lua语言的基础语法有所掌握。 Lua支持变量、函数、控制流、表(类似于数组和键值对映射)等核心概念。 它的语法设计简洁明了,便于理解和应用。 例如,定义一个变量并赋值:```lualocal myVariable = "Hello, Neovim!"```四、Lua在Neovim中的实际应用1. 配置文件:Neovim的初始化文件`.vimrc`能够完全采用Lua语言编写,只需在文件首部声明`set runtimepath^=~/.config/nvim ini...
基于STM32 F4的永磁同步电机无位置传感器控制策略研究内容概要:本文围绕基于STM32 F4的永磁同步电机(PMSM)无位置传感器控制策略展开研究,重点探讨在不使用机械式位置传感器的情况下,如何通过算法实现对电机转子位置和速度的精确估算与控制。文中结合STM32 F4高性能微控制器平台,采用如滑模观测器(SMO)、扩展卡尔曼滤波(EKF)或高频注入法等先进观测技术,实现对电机反电动势或磁链的实时估算,进而完成磁场定向控制(FOC)。研究涵盖了控制算法设计、系统建模、仿真验证(可能使用Simulink)以及在嵌入式平台上的代码实现与实验测试,旨在提高电机驱动系统的可靠性、降低成本并增强环境适应性。; 适合人群:具备一定电机控制理论基础和嵌入式开发经验的电气工程、自动化及相关专业的研究生、科研人员及从事电机驱动开发的工程师;熟悉C语言和MATLAB/Simulink工具者更佳。; 使用场景及目标:①为永磁同步电机驱动系统在高端制造、新能源汽车、家用电器等领域提供无位置传感器解决方案的设计参考;②指导开发者在STM32平台上实现高性能FOC控制算法,掌握位置观测器的设计与调试方法;③推动电机控制技术向低成本、高可靠方向发展。; 其他说明:该研究强调理论与实践结合,不仅包含算法仿真,还涉及实际硬件平台的部署与测试,建议读者在学习过程中配合使用STM32开发板和PMSM电机进行实操验证,以深入理解控制策略的动态响应与鲁棒性问题。
先看效果: https://pan.quark.cn/s/21391ce66e01 企业级办公自动化系统,一般被称为OA(Office Automation)系统,是企业数字化进程中的关键构成部分,旨在增强组织内部的工作效能与协同水平。 本资源提供的企业级办公自动化系统包含了详尽的C#源代码,涉及多个技术领域,对于软件开发者而言是一份极具价值的参考资料。 接下来将具体介绍OA系统的核心特性、关键技术以及在实践操作中可能涉及的技术要点。 1. **系统构造** - **三层构造**:大型OA系统普遍采用典型的三层构造,包含表现层、业务逻辑层和数据访问层。 这种构造能够有效分离用户交互界面、业务处理过程和数据存储功能,从而提升系统的可维护性与可扩展性。 2. **C#编程语言** - **C#核心**:作为开发语言,C#具备丰富的类库和语法功能,支持面向对象编程,适用于开发复杂的企业级应用。 - **.NET Framework**:C#在.NET Framework环境中运行,该框架提供了大量的类库与服务,例如ASP.NET用于Web开发,Windows Forms用于桌面应用。 3. **控件应用** - **WinForms**或**WPF**:在客户端,可能会使用WinForms或WPF来设计用户界面,这两者提供了丰富的控件和可视化设计工具。 - **ASP.NET Web Forms/MVC**:对于Web应用,可能会使用ASP.NET的Web Forms或MVC模式来构建交互式页面。 4. **数据库操作** - **SQL Server**:大型OA系统通常采用关系型数据库管理系统,如SQL Server,用于存储和处理大量数据。 - **ORM框架**:如Ent...
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值