数据库类型和功能_功能和功能类型

本文深入探讨了函数的概念及其在数学和计算机科学中的应用。详细解释了包括常数函数、一对一(单射)函数、映射、入门(满射)函数、一对一(双射)函数和可逆函数在内的六种主要函数类型。每种类型的函数都有其独特的定义和性质,对理解复杂的数据关系至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据库类型和功能

功能 (Function)

Suppose, X and Y are two any sets. A relation f from X to Y is said to be a function. If for every x E X there is a unique y E Y such that (x, y) E f. A function is a special case of the relation. The term such as "transformation", "mapping", "correspondence" and "operations" are used as synonyms for "function". The notation f: X → Y.

假设XY是两个任意集合。 从X到Y的关系f被认为是一个函数。 如果对于每个x EX都有一个唯一的y EY ,使得(x,y)E f 。 函数是关系的特例。 诸如“变换”“映射”“对应”“操作”之类的术语用作“功能”的同义词。 f表示法:X→Y

X → Y is used to express f as a function from X to Y. For a function f: X → Y if (x,y) E f then x is called an argument and the corresponding y is called the image of x under f. Instead of writing (x, y) e f, it is customary to write y= f(x) and to call y the values of the function f at x.

X→Y用于将f表示为从X到Y的函数。 对于函数f:X→Y如果(x,y)E f,x称为自变量,而对应的y称为fx的图像。 代替写(x,y)ef ,习惯上写y = f(x)并在x处调用y函数f的值。

Example (f) : A -> B

范例(f):A-> B

function A, B
  • A is called domain of f.

    A称为f的域

  • B is called codomain of f.

    B称为f的共域

  • The range is the set containing all images of the elements of an under function f. It is denoted by f(a).

    范围是包含under函数f的元素的所有图像的集合。 用f(a)表示。

  • Range of f = { f(n) | x E A}

    f的范围= {f(n)| x EA}

  • Range of f C= B codomain

    f C = B共域的范围

功能类型 (Types of functions)

1. Constant function

1.常数函数

The function f defined in a set X such that f(x) = a, xEX, is called a constant function. In other word f: X → Y is a constant function if the range of f consists of only one element. This can be represented by a diagram.

在集合X中定义的函数f使得f(x)= axEX称为常数函数 。 换句话说,如果f的范围仅包含一个元素,则X→Y是常数函数。 这可以用图表表示。

2. One-to-one (injective)

2.一对一(单射)

A mapping f of X into Y is said to be injective or one-to-one mapping. If distinct elements of X have distinct images in Y. It is called injective.

X到Y的映射f 称为单射或一对一映射 。 如果X的不同元素在Y中具有不同的图像。 这称为内射

The f: X → Y is a (one-to-one) mapping, if and only if:f(x1) = f(x2) => x1 = x2

f:X→Y(一对一)映射 ,当且仅当: f(x1)= f(x2)=> x1 = x2

In other words f: X → Y is one-to-one (or injective) mapping, whenever x1 = x2 then,

换句话说,只要x1 = x2,f:X→Y一对一(或内射)映射

F(x1) not equals to f(x2), where, x1, x2 belongs to X.

F(x1)不等于f(x2) ,其中x1x2属于X。

Thus a mapping from a set X into a set Y is one-to-one or injective, if each element of Y has at least one element of X mapping into Y.

因此,如果Y的每个元素都具有X的至少一个元素映射到Y,则从集合X到集合Y的映射是一对一或单射的

3. Into mapping

3.映射

A mapping f: A → B is said to be into mapping, if f(A) is a proper subset of B. In this case, we say that f maps A into B.

如果f(A)B的适当子集,则认为映射f:A→B正在映射 。 在这种情况下,我们说f将A映射为B。

4. Onto function (surjective)

4.入门功能(形容词)

If the mapping f: X → Y is such that every element of Y is the image of at least one element of X then the mapping is called an onto or surjective mapping. In other words, the mapping f: X → Y is onto, if given yEY there exists an element xEX such that y = f(x).

如果映射F:X→Y是如:Y的每个元素是X中的至少一个元件的图像,然后该映射被称为上或满射映射 。 换句话说,映射f:X→Y在其上,如果给定yEY,则存在元素xEX ,使得y = f(x)

5. One-to-one (Bijective) function

5.一对一(双射)功能

A mapping which is one-to-one as well as onto is called Bijective or one-to-one onto mapping.

一对一以及到一对一的映射称为Bijective或一对一到映射

To determine whether a mapping is Bijective, we follow the following procedure.

要确定映射是否为Bijective ,我们遵循以下过程。

  • To show that f is one-to-one we must show that

    为了证明f是一对一的,我们必须证明

    f(x1) = f(x2) => x1 = x2

    f(x1)= f(x2)=> x1 = x2

  • To show that f is onto we must show that for each yEY, there exists an xEX such that f(x) = y.

    为了证明f在上面,我们必须证明对于每个yEY ,都有一个xEX使得f(x)= y

    Then, it is

    那是

    one-to-one onto mapping. The sets X and Y have the same number of elements.

    一对一映射XY集具有相同数量的元素。

6. Invertible function

6.可逆功能

A function f: X → Y is said to be invertible. If there exists a function g: y → X such that: Fog = ty and gof = tx

函数f:X→Y被认为是可逆的 。 如果存在函数g:y→X ,使得: Fog = ty和gof = tx

Where Ix and Iy are the identify maps. In such a case the function g is called the inverse of f and is denoted by f^-1.

其中IxIy是标识图。 在这种情况下,函数g称为f的逆,并由f ^ -1表示。

翻译自: https://www.includehelp.com/basics/functions-and-the-types-of-functions.aspx

数据库类型和功能

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值