What is the differenc between config_adhoc and config_edge?

The adhoc configuration avoids all use of rendezvous servers. Instead it relies on IP multicast. This works well on local subnets but it is very difficult for peers to locate each other across the Internet. If your peers will be widely distributed on different networks then it will be necessary to use rendezvous peers. Most of the peers will be configured as "edge" meaning that they are at the edge of the network and use a rendezvous to locate other peers. A few of your peers will be configured as "rendezvous" meaning that they act as the central locations where peers may find each other.
单向双向V2G 环境下分布式电源与电动汽车充电站联合配置方法(Matlab代码实现)内容概要:本文介绍了在单向和双向V2G(Vehicle-to-Grid)环境下,分布式电源与电动汽车充电站的联合配置方法,并提供了基于Matlab的代码实现。研究涵盖电力系统优化、可再生能源接入、电动汽车充放电调度、储能配置及微电网经济调度等多个关键技术领域,重点探讨了在不同电价机制和需求响应策略下,如何通过智能优化算法实现充电站与分布式电源的协同规划与运行优化。文中还展示了多种应用场景,如有序充电调度、鲁棒优化模型、多目标优化算法(如NSGA-II、粒子群算法)在电力系统中的实际应用,体现了较强的工程实践价值和技术综合性。; 适合人群:具备电力系统、新能源、智能优化算法等相关背景的科研人员、研究生及从事能源系统规划与优化的工程技术人员;熟悉Matlab/Simulink仿真工具者更佳。; 使用场景及目标:①用于科研项目中关于电动汽车与分布式电源协同配置的模型构建与仿真验证;②支持毕业论文、期刊投稿中的案例分析与算法对比;③指导实际电力系统中充电站布局与能源调度的优化设计。; 阅读建议:建议结合文中提供的Matlab代码与具体案例进行同步实践,重点关注优化模型的数学建模过程与算法实现细节,同时可参考文末网盘资源获取完整代码与数据集以提升学习效率。
【电动车】【超级棒】基于蒙特卡洛模拟法的电动汽车充电负荷研究(Matlab代码实现)内容概要:本文围绕基于蒙特卡洛模拟法的电动汽车充电负荷研究展开,利用Matlab代码实现对不同类型电动汽车(如常规充电、快速充电、换电模式)在不同场景下的充电负荷进行建模与仿真。通过蒙特卡洛方法模拟大量电动汽车的充电行为,结合用户出行规律、充电时间、电量需求等随机因素,分析电动汽车规模化接入电网后对电力系统负荷的影响,并探讨分时电价策略对充电负荷的引导作用,进而优化电网运行。研究涵盖充电负荷的空间分布特性、时间分布特征及对电网峰谷差的影响,旨在为电力系统规划和电动汽车有序充电管理提供理论支持和技术工具。; 适合人群:具备一定电力系统、交通工程或新能源汽车背景的研究生、科研人员及从事智能电网、电动汽车相关领域的工程技术人员。; 使用场景及目标:①用于研究大规模电动汽车接入对配电网负荷曲线的影响;②支撑分时电价、需求响应等政策制定与优化;③为充电站规划、电网调度、储能配置等提供数据支持和仿真平台;④适用于学术研究、课题复现及工程项目前期分析。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注蒙特卡洛模拟的参数设置、充电行为的概率建模过程,并尝试调整输入变量以观察负荷变化趋势,加深对电动汽车充电负荷不确定性和聚合效应的理解。
在 MRIcron 中创建 ROI(Region of Interest)时,可以通过指定原点、约束条件、边缘差异、半径、腐蚀/膨胀周期和强度约束等参数来精确定义感兴趣区域。以下是对这些参数的具体解释和操作方式: ### 创建 ROI 的参数说明 - **原点(Origin)**:ROI 的中心坐标,通常以体素(voxel)为单位表示。例如 `75*64*28` 表示在 X、Y、Z 三个维度上的坐标位置。 - **与原点的差异(Constraints: Difference from Origin)**:用于限制 ROI 扩展时与原点的最大偏移距离,值越大,允许的扩展范围越广。例如 `16` 表示在每个维度上最多偏移 16 个体素。 - **边缘差异(Edge Difference)**:用于控制 ROI 扩展过程中对边缘的敏感度。数值越高,ROI 越容易跨越边界,值较低则有助于限制在局部区域内[^1]。 - **半径(Radius)**:以毫米为单位定义 ROI 的最大扩展半径,例如 `32mm` 表示从原点出发最多扩展 32 毫米范围。 - **腐蚀/膨胀周期(Erode/Dilate Cycles)**:用于对生成的 ROI 进行形态学处理,`Erode` 可以去除边缘的小区域,`Dilate` 则可以扩大 ROI 的范围。周期数决定了操作的强度。 - **零强度约束(Zero Intensity Constraints)**:确保 ROI 不扩展到信号强度为零的区域,有助于避免将背景噪声纳入分析。 - **边缘附加(Edge Append to Current VOI)**:将新定义的边缘区域附加到当前已有的 VOI(Volume of Interest)中,实现 ROI 的逐步扩展。 ### 操作步骤 1. 在 MRIcron 中加载目标图像。 2. 打开 VOI 工具,选择“Create New VOI”或“Edit Existing VOI”。 3. 在参数设置界面中输入以下内容: - Origin: `75*64*28` - Constraints: Difference from Origin: `16` - Edge Difference: `16` - Radius: `32mm` - Erode/Dilate Cycles: 根据需要设置 - Zero Intensity Constraints: 启用 - Edge Append to Current VOI: 启用(如果需要扩展已有 VOI) 4. 确认设置后点击“Apply”生成 ROI。 ### 示例代码(伪代码) ```matlab % 伪代码示意 VOI = createVOI('Origin', [75, 64, 28], ... 'Constraints', struct('DifferenceFromOrigin', 16, 'EdgeDifference', 16), ... 'Radius', 32, ... 'Morphology', struct('ErodeCycles', 2, 'DilateCycles', 1), ... 'IntensityConstraint', 'ZeroBackground', ... 'AppendToCurrentVOI', true); ``` ### 注意事项 - MRIcron 的 ROI 创建功能虽然强大,但在某些高级图形渲染和交互性方面可能略显不足。对于需要更现代界面和增强功能的用户,可以考虑使用 MRICROGL,它在 3D 渲染和用户交互方面有显著提升[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值