转载自:http://www.cnblogs.com/liuling/p/2013-7-24-01.html
排序大的分类可以分为两种:内排序和外排序。在排序过程中,全部记录存放在内存,则称为内排序,如果排序过程中需要使用外存,则称为外排序。下面讲的排序都是属于内排序。
内排序有可以分为以下几类:
(1)、插入排序:直接插入排序、二分法插入排序、希尔排序。
(2)、选择排序:简单选择排序、堆排序。
(3)、交换排序:冒泡排序、快速排序。
(4)、归并排序
(5)、基数排序
一、插入排序
•思想:每步将一个待排序的记录,按其顺序码大小插入到前面已经排序的字序列的合适位置,直到全部插入排序完为止。
•关键问题:在前面已经排好序的序列中找到合适的插入位置。
•方法:
–直接插入排序
–二分插入排序
–希尔排序
①直接插入排序(从后向前找到合适位置后插入)
1、基本思想:每步将一个待排序的记录,按其顺序码大小插入到前面已经排序的字序列的合适位置(从后向前找到合适位置后),直到全部插入排序完为止。
2、实例
3、java实现
[java] view plaincopy在CODE上查看代码片派生到我的代码片
package com.sort;
public class 直接插入排序 {
public static void main(String[] args) {
int[] a={49,38,65,97,76,13,27,49,78,34,12,64,1};
System.out.println("排序之前:");
for (int i = 0; i < a.length; i++) {
System.out.print(a[i]+" ");
}
//直接插入排序
for (int i = 1; i < a.length; i++) {
//待插入元素
int temp = a[i];
int j;
/*for (j = i-1; j>=0 && a[j]>temp; j--) {
//将大于temp的往后移动一位
a[j+1] = a[j];
}*/
for (j = i-1; j>=0; j--) {
//将大于temp的往后移动一位
if(a[j]>temp){
a[j+1] = a[j];
}else{
break;
}
}
a[j+1] = temp;
}
System.out.println();
System.out.println("排序之后:");
for (int i = 0; i < a.length; i++) {
System.out.print(a[i]+" ");
}
}
}
4、分析
直接插入排序是稳定的排序。关于各种算法的稳定性分析可以参考http://www.cnblogs.com/Braveliu/archive/2013/01/15/2861201.html
文件初态不同时,直接插入排序所耗费的时间有很大差异。若文件初态为正序,则每个待插入的记录只需要比较一次就能够找到合适的位置插入,故算法的时间复杂度为O(n),这时最好的情况。若初态为反序,则第i个待插入记录需要比较i+1次才能找到合适位置插入,故时间复杂度为O(n2),这时最坏的情况。
直接插入排序的平均时间复杂度为O(n2)。
②二分法插入排序(按二分法找到合适位置插入)
1、基本思想:二分法插入排序的思想和直接插入一样,只是找合适的插入位置的方式不同,这里是按二分法找到合适的位置,可以减少比较的次数。
2、实例
3、java实现
package com.sort
public class 二分插入排序 {
public static void main(String[] args) {
int[] a={49,38,65,97,176,213,227,49,78,34,12,164,11,18,1};
System.out.println("排序之前:");
for (int i = 0; i < a.length; i++) {
System.out.print(a[i]+" ");
}
//二分插入排序
sort(a);
System.out.println();
System.out.println("排序之后:");
for (int i = 0; i < a.length; i++) {
System.out.print(a[i]+" ");
}
}
private static void sort(int[] a) {
for (int i = 0; i < a.length; i++) {
int temp = a[i];
int left = 0;
int right = i-1;
int mid = 0;
while(left<=right){
mid = (left+right)/2;
if(temp<a[mid]){
right = mid-1;
}else{
left = mid+1;
}
}
for (int j = i-1; j >= left; j--) {
a[j+1] = a[j];
}
if(left != i){
a[left] = temp;
}
}
}
}
4、分析
当然,二分法插入排序也是稳定的。
二分插入排序的比较次数与待排序记录的初始状态无关,仅依赖于记录的个数。当n较大时,比直接插入排序的最大比较次数少得多。但大于直接插入排序的最小比较次数。算法的移动次数与直接插入排序算法的相同,最坏的情况为n2/2,最好的情况为n,平均移动次数为O(n2)。