异构OS平台的不同点 - 字节顺序

本文探讨了不同平台间文件格式的差异,特别是字节顺序的不同如何影响文件的跨平台迁移,并介绍了Big-Endian与Little-Endian两种主要的字节存储机制。

不同平台的文件格式通常是不同的,不同平台的文件的差异主要在于
1, 文件头标志
2, 字节的高低位顺序可能不一样
在10g中,主要就是通过 RMAN 修改这两个东西来实现跨平台的迁移的

字节顺序和平台
   数据文件所以不能跨平台,主要是由于不同平台的字节顺序不同,这是计算机领域由来已久的问题之一,在各种计算机体系结构中,由于对于字、字节等的存储机制有所不同,通信双方交流的信息单元(比特、字节、字、双字等)应该以什么样的顺序进行传送就成了一个问题,如果不达成一致的规则,通信双方将无法进行正确的编/译码从而导致通信失败。

 目前在各种体系的计算机中通常采用的字节存储机制主要有两种:Big-Endian和Little-Endian 。

 一些操作系统(包括Windows)在低位内存地址中存放二进制数据的最低有效字节,因此这种系统被称为Little Endian;一些操作系统(包括Solaris)将最高有效字节存储在低位内存地址中,因此这种系统被称为Big Endian。

  举一个简单点的例子,假如1122这样一个数据要存入不同系统,对于Little Endian的系统,存储的顺序就是2211,小头在前;而对于Big Endian的系统来说,存储顺序就是1122,大头在前,显然Big Endian更符合我们通常的语言习惯。

    那么跨平台的问题就出现了,当一个Little Endian的系统试图从一个Big Endian的系统中读取数据时,就需要通过转换,否则不同的字节顺序将导致数据不能被正确读取。

数据库所处平台的字节序可通过如下查询得到 :
select * from v$transportable_platform

PLATFORM_ID PLATFORM_NAME                          ENDIAN_FORMAT
 ----------- -------------------------------------- --------------
           1 Solaris[tm] OE (32-bit)                Big
           7 Microsoft Windows IA (32-bit)          Little
          10 Linux IA (32-bit)                      Little
           6 AIX-Based Systems (64-bit)             Big
           4 HP-UX IA (64-bit)                      Big

来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/35489/viewspace-767226/,如需转载,请注明出处,否则将追究法律责任。

转载于:http://blog.itpub.net/35489/viewspace-767226/

下载方式:https://pan.quark.cn/s/a4b39357ea24 布线问题(分支限界算法)是计算机科学和电子工程领域中一个广为人知的议题,它主要探讨如何在印刷电路板上定位两个节点间最短的连接路径。 在这一议题中,电路板被构建为一个包含 n×m 个方格的矩阵,每个方格能够被界定为可通行或不可通行,其核心任务是定位从初始点到最终点的最短路径。 分支限界算法是处理布线问题的一种常用策略。 该算法与回溯法有相似之处,但存在差异,分支限界法仅需获取满足约束条件的一个最优路径,并按照广度优先或最小成本优先的原则来探索解空间树。 树 T 被构建为子集树或排列树,在探索过程中,每个节点仅被赋予一次成为扩展节点的机会,且会一次性生成其全部子节点。 针对布线问题的解决,队列式分支限界法可以被采用。 从起始位置 a 出发,将其设定为首个扩展节点,并将与该扩展节点相邻且可通行的方格加入至活跃节点队列中,将这些方格标记为 1,即从起始方格 a 到这些方格的距离为 1。 随后,从活跃节点队列中提取队首节点作为下一个扩展节点,并将与当前扩展节点相邻且未标记的方格标记为 2,随后将这些方格存入活跃节点队列。 这一过程将持续进行,直至算法探测到目标方格 b 或活跃节点队列为空。 在实现上述算法时,必须定义一个类 Position 来表征电路板上方格的位置,其成员 row 和 col 分别指示方格所在的行和列。 在方格位置上,布线能够沿右、下、左、上四个方向展开。 这四个方向的移动分别被记为 0、1、2、3。 下述表格中,offset[i].row 和 offset[i].col(i=0,1,2,3)分别提供了沿这四个方向前进 1 步相对于当前方格的相对位移。 在 Java 编程语言中,可以使用二维数组...
源码来自:https://pan.quark.cn/s/a4b39357ea24 在VC++开发过程中,对话框(CDialog)作为典型的用户界面组件,承担着与用户进行信息交互的重要角色。 在VS2008SP1的开发环境中,常常需要满足为对话框配置个性化背景图片的需求,以此来优化用户的操作体验。 本案例将系统性地阐述在CDialog框架下如何达成这一功能。 首先,需要在资源设计工具中构建一个新的对话框资源。 具体操作是在Visual Studio平台中,进入资源视图(Resource View)界面,定位到对话框(Dialog)分支,通过右键选择“插入对话框”(Insert Dialog)选项。 完成对话框内控件的布局设计后,对对话框资源进行保存。 随后,将着手进行背景图片的载入工作。 通常有两种主要的技术路径:1. **运用位图控件(CStatic)**:在对话框界面中嵌入一个CStatic控件,并将其属性设置为BST_OWNERDRAW,从而具备自主控制绘制过程的权限。 在对话框的类定义中,需要重写OnPaint()函数,负责调用图片资源并借助CDC对象将其渲染到对话框表面。 此外,必须合理处理WM_CTLCOLORSTATIC消息,确保背景图片的展示不会受到其他界面元素的干扰。 ```cppvoid CMyDialog::OnPaint(){ CPaintDC dc(this); // 生成设备上下文对象 CBitmap bitmap; bitmap.LoadBitmap(IDC_BITMAP_BACKGROUND); // 获取背景图片资源 CDC memDC; memDC.CreateCompatibleDC(&dc); CBitmap* pOldBitmap = m...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值