Tossing Bad Mupd Msg Pid In The Alert.Log

本文介绍了一个出现在 Oracle Server 企业版 10.2.0.0 至 10.2.0.2 版本的 RAC 环境中的重复警告信息 'tossing bad MUPD msg pid' 的原因及解决方案。该警告由 UNPUBLISHED Bug4773318 引起,可以通过安装特定补丁解决。

发现一个测试系统有大量的警告:

Thu Sep 27 06:00:22 2007
tossing bad MUPD msg pid 856294
tossing bad MUPD msg pid 856294
tossing bad MUPD msg pid 856294
tossing bad MUPD msg pid 856294
tossing bad MUPD msg pid 856294
Thu Sep 27 06:09:09 2007
tossing bad MUPD msg pid 856294
tossing bad MUPD msg pid 856294
tossing bad MUPD msg pid 856294
tossing bad MUPD msg pid 856294
tossing bad MUPD msg pid 856294
tossing bad MUPD msg pid 856294
tossing bad MUPD msg pid 856294

[@more@]

Applies to:

Oracle Server - Enterprise Edition - Version: 10.2.0.0 to 10.2.0.2
This problem can occur on any platform.

Symptoms

In a RAC environment a repeated occurrence of diagnostic message warning 'tossing bad MUPD msg pid' in the alert.log. Example:

Tue Aug 15 17:17:54 2006
tossing bad MUPD msg pid 11806
tossing bad MUPD msg pid 11806
tossing bad MUPD msg pid 11806
tossing bad MUPD msg pid 11806
tossing bad MUPD msg pid 11806
tossing bad MUPD msg pid 11806
tossing bad MUPD msg pid 11806
tossing bad MUPD msg pid 11806
tossing bad MUPD msg pid 11806
tossing bad MUPD msg pid 11806
tossing bad MUPD msg pid 11806
tossing bad MUPD msg pid 11806
tossing bad MUPD msg pid 11806

Cause

"Tossing bad mupd msg pid" in the alert.log is caused by UNPUBLISHED Bug 4773318

Solution

This message can be safely ignored as its just information message not error message. So it can be ignored without problems.

Install patch for Bug 4773318. The solution is already included in DBMS patch-set 10.2.0.3

来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/8710/viewspace-974100/,如需转载,请注明出处,否则将追究法律责任。

转载于:http://blog.itpub.net/8710/viewspace-974100/

observations = np.array([1, 1, 0, 1, 0, 0, 1, 0, 1, 1]) n = len(observations) print("Observations:", observations) print("n =", n) pi_0, p_0, q_0 = 0.46, 0.55, 0.67 print(f"Initial parameters: π(0) = {pi_0}, p(0) = {p_0}, q(0) = {q_0}") def em_algorithm(observations, pi_init, p_init, q_init, max_iters=100, tol=1e-6): pi, p, q = pi_init, p_init, q_init n = len(observations) print("\nEM Algorithm iterations:") print("Iter\tπ\t\tp\t\tq\t\tLog-likelihood") print("-" * 60) for iteration in range(max_iters): gamma = np.zeros(n) for i in range(n): x_i = observations[i] prob_B = pi * (p**x_i) * ((1-p)**(1-x_i)) prob_C = (1-pi) * (q**x_i) * ((1-q)**(1-x_i)) gamma[i] = prob_B / (prob_B + prob_C) pi_new = np.mean(gamma) numerator_p = np.sum(gamma * observations) denominator_p = np.sum(gamma) p_new = numerator_p / denominator_p if denominator_p > 0 else p numerator_q = np.sum((1 - gamma) * observations) denominator_q = np.sum(1 - gamma) q_new = numerator_q / denominator_q if denominator_q > 0 else q log_likelihood = 0 for i in range(n): x_i = observations[i] prob_B = pi * (p**x_i) * ((1-p)**(1-x_i)) prob_C = (1-pi) * (q**x_i) * ((1-q)**(1-x_i)) log_likelihood += np.log(prob_B + prob_C) print(f"{iteration+1}\t{pi:.6f}\t{p:.6f}\t{q:.6f}\t{log_likelihood:.6f}") if abs(pi_new - pi) < tol and abs(p_new - p) < tol and abs(q_new - q) < tol: break pi, p, q = pi_new, p_new, q_new return pi, p, q, iteration + 1 pi_final, p_final, q_final, iterations = em_algorithm(observations, pi_0, p_0, q_0) print(f"\nConverged after {iterations} iterations") print(f"Final parameters:") print(f"π = {pi_final:.6f}") print(f"p = {p_final:.6f}") print(f"q = {q_final:.6f}") print("\nFormula Derivation:") print("E-step: γ_i = P(Z_i=B|X_i) = π·p^{x_i}·(1-p)^{1-x_i} / [π·p^{x_i}·(1-p)^{1-x_i} + (1-π)·q^{x_i}·(1-q)^{1-x_i}]") print("M-step:") print("π^{(t+1)} = (1/n)·Σγ_i") print("p^{(t+1)} = Σ(γ_i·x_i) / Σγ_i") print("q^{(t+1)} = Σ((1-γ_i)·x_i) / Σ(1-γ_i)")这是2. (25 Points) Suppose there are three coins, denoted A, B, and C. The probabilities of these coins coming up heads are π, p and q. Conduct the following coin toss test. First, toss coin A and select coin B or coin C according to its result, with coin B being selected for heads and coin C for tails. Then toss the selected coin, with the result recorded as 1 for heads and 0 for tails. Repeat the test n times independently (here, n = 10). The observation results are as follows: 1, 1, 0, 1, 0, 0, 1, 0, 1, 1 Suppose that only the result of the coin toss can be observed, but not the process of tossing. The question is how to estimate the probability that all three coins will come up heads, i.e., to find the maximum likelihood estimation of the model parameters &theta; = (π, p, q). (Assuming that the initial value of the model parameter is π(0) = 0.46, p(0) = 0.55, q(0) = 0.67, you can use python to calculate the results). Note: In addition to submitting the formulas and answers, you are also required to submit the .py/.ipynb code. 的代码。可以检查一下公式推导和最终答案是否有出现吗?除此以外,我希望把公式推导作为放在markdown中的部分,而不是作为代码print的输出。如果说当前有这样的问题,可以为我将代码改为只呈现正常输出和最终结果(全英文无代码)的版本,然后将公式推导部分单独摘出来给我吗
12-17
【轴承故障诊断】加权多尺度字典学习模型(WMSDL)及其在轴承故障诊断上的应用(Matlab代码实现)内容概要:本文介绍了加权多尺度字典学习模型(WMSDL)在轴承故障诊断中的应用,并提供了基于Matlab的代码实现。该模型结合多尺度分析与字典学习技术,能够有效提取轴承振动信号中的故障特征,提升故障识别精度。文档重点阐述了WMSDL模型的理论基础、算法流程及其在实际故障诊断中的实施步骤,展示了其相较于传统方法在特征表达能力和诊断准确性方面的优势。同时,文中还提及该资源属于一个涵盖多个科研方向的技术合集,包括智能优化算法、机器学习、信号处理、电力系统等多个领域的Matlab仿真案例。; 适合人群:具备一定信号处理和机器学习基础,从事机械故障诊断、工业自动化、智能制造等相关领域的研究生、科研人员及工程技术人员。; 使用场景及目标:①学习并掌握加权多尺度字典学习模型的基本原理与实现方法;②将其应用于旋转机械的轴承故障特征提取与智能诊断;③结合实际工程数据复现算法,提升故障诊断系统的准确性和鲁棒性。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注字典学习的训练过程与多尺度分解的实现细节,同时可参考文中提到的其他相关技术(如VMD、CNN、BILSTM等)进行对比实验与算法优化。
【硕士论文复现】可再生能源发电与电动汽车的协同调度策略研究(Matlab代码实现)内容概要:本文档围绕“可再生能源发电与电动汽车的协同调度策略研究”展开,旨在通过Matlab代码复现硕士论文中的核心模型与算法,探讨可再生能源(如风电、光伏)与大规模电动汽车接入电网后的协同优化调度方法。研究重点包括考虑需求侧响应的多时间尺度调度、电动汽车集群有序充电优化、源荷不确定性建模及鲁棒优化方法的应用。文中提供了完整的Matlab实现代码与仿真模型,涵盖从场景生成、数学建模到求解算法(如NSGA-III、粒子群优化、ADMM等)的全过程,帮助读者深入理解微电网与智能电网中的能量管理机制。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的研究生、科研人员及从事新能源、智能电网、电动汽车等领域技术研发的工程人员。; 使用场景及目标:①用于复现和验证硕士论文中的协同调度模型;②支撑科研工作中关于可再生能源消纳、电动汽车V2G调度、需求响应机制等课题的算法开发与仿真验证;③作为教学案例辅助讲授能源互联网中的优化调度理论与实践。; 阅读建议:建议结合文档提供的网盘资源下载完整代码,按照目录顺序逐步学习各模块实现,重点关注模型构建逻辑与优化算法的Matlab实现细节,并通过修改参数进行仿真实验以加深理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值