tf.nn.softmax_cross_entropy_with_logits的用法

本文详细解析了TensorFlow中tf.nn.softmax_cross_entropy_with_logits函数的工作原理。从输入参数logits和labels开始,通过softmax计算概率分布,再到与真实标签进行交叉熵计算,最终求得损失值的过程。并给出了具体的代码实现示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在计算loss的时候,最常见的一句话就是tf.nn.softmax_cross_entropy_with_logits,那么它到底是怎么做的呢?

首先明确一点,loss是代价值,也就是我们要最小化的值

tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None)

除去name参数用以指定该操作的name,与方法有关的一共两个参数:

第一个参数logits:就是神经网络最后一层的输出,如果有batch的话,它的大小就是[batchsize,num_classes],单样本的话,大小就是num_classes

第二个参数labels:实际的标签,大小同上

具体的执行流程大概分为两步:

第一步是先对网络最后一层的输出做一个softmax,这一步通常是求取输出属于某一类的概率,对于单样本而言,输出就是一个num_classes大小的向量([Y1,Y2,Y3…]其中Y1,Y2,Y3…分别代表了是属于该类的概率)

softmax的公式是:

至于为什么是用的这个公式?这里不介绍了,涉及到比较多的理论证明

第二步是softmax的输出向量[Y1,Y2,Y3…]和样本的实际标签做一个交叉熵,公式如下:

其中指代实际的标签中第i个的值(用mnist数据举例,如果是3,那么标签是[0,0,0,1,0,0,0,0,0,0],除了第4个值为1,其他全为0)

就是softmax的输出向量[Y1,Y2,Y3…]中,第i个元素的值

显而易见,预测越准确,结果的值越小(别忘了前面还有负号),最后求一个平均,得到我们想要的loss

注意!!!这个函数的返回值并不是一个数,而是一个向量,如果要求交叉熵,我们要再做一步tf.reduce_sum操作,就是对向量里面所有元素求和,最后才得到,如果求loss,则要做一步tf.reduce_mean操作,对向量求均值!

import tensorflow as tf  

#our NN's output  
logits=tf.constant([[1.0,2.0,3.0],[1.0,2.0,3.0],[1.0,2.0,3.0]])  
#step1:do softmax  
y=tf.nn.softmax(logits)  
#true label  
y_=tf.constant([[0.0,0.0,1.0],[0.0,0.0,1.0],[0.0,0.0,1.0]])  
#step2:do cross_entropy  
cross_entropy = -tf.reduce_sum(y_*tf.log(y))  
#do cross_entropy just one step  
cross_entropy2=tf.reduce_sum(tf.nn.softmax_cross_entropy_with_logits(logits, y_))#dont forget tf.reduce_sum()!!  

with tf.Session() as sess:  
    softmax=sess.run(y)  
    c_e = sess.run(cross_entropy)  
    c_e2 = sess.run(cross_entropy2)  
    print("step1:softmax result=")  
    print(softmax)  
    print("step2:cross_entropy result=")  
    print(c_e)  
    print("Function(softmax_cross_entropy_with_logits) result=")  
    print(c_e2)

输出结果是:
step1:softmax result=
[[ 0.09003057 0.24472848 0.66524094]
[ 0.09003057 0.24472848 0.66524094]
[ 0.09003057 0.24472848 0.66524094]]
step2:cross_entropy result=
1.22282
Function(softmax_cross_entropy_with_logits) result=
1.2228

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值