Graphics(7)(转)

双缓冲

如果一个游戏的多个图片需要移动,频繁的更新.在所有更新完成之前,窗口服务客户端一面的缓冲区将会被填满.对于用户来说,将会在屏幕上看到闪烁.这个问题的解决方法是试用双缓冲.首先,图片被画在一个没有屏幕的Bitmap上面,即备用缓冲区.然后再画到屏幕上面去.尤其是在游戏中,每秒要重画屏幕好几次,实际都需要用这种屏幕以外的Bitmap.

试用双缓冲要遵循一下步骤:
1.在ConstructL里面创建一个新的Bitmap和视图大小.如果有多个Bitmap画在备用缓冲区之上,则设置颜色深度最好和要放在备用缓冲区里面的图片一样.否则,bit深度应该和视图的bit深度相同.理想化的,所有用到的Bitmap都应该和视图的bit深度所相同,除了遮挡.这样来避免对于不通bit深度的渲染而影响执行的速度,浪费时间.
2.为已经建立的备用缓冲区的Bitmap创建一个Bitmap图案和图片连接.这里必须要建立一个图片连接,这和前面提到的一样,只有建立了图片连接,才可以在其上画图,这和视图里面的一样.
3.每一次屏幕更新,图片被画入备用缓冲区,当画完整以后,调用DrawNow或DrawDeferred来显示图片.DrawDeferred是比较安全的方法.
4.在视图的Draw方法里面,我们只Draw已经存在的备用缓冲区的最后一个位图终端操作到视图里.(字体缓冲区)

注:blit-一个早期的根据试验的位图终端.
示例代码:
以下内容为程序代码:
void CMyGameView::ConstructL(const TRect& aRect)

{

.

.

.

// Create a new bitmap with size of view's rect and color depth of

// screen

TDisplayMode displayMode = CEikonEnv::Static()->

ScreenDevice()->DisplayMode();

iBackBufferBitmap = new(ELeave) CFbsBitmap();

User::LeaveIfError(iBackBufferBitmap->

Create(Rect().Size(), displayMode));



// Create bitmap device for the bitmap

iBackBufferDevice = CFbsBitmapDevice::NewL(iBackBufferBitmap);



// Create graphics context for the bitmap

User::LeaveIfError(iBackBufferDevice.CreateContext(

iBackBufferGc));

}



CMyGameView::~CMyGameView()

{

delete iBackBufferGc;



delete iBackBufferDevice;





delete iBackBufferBitmap;

}



// Called by e.g. timer to update the screen periodically.

// Here all the necessary drawing is done to backbuffer.

void CMyGameView::UpdateDisplay()

{

// Draw some background

iBackBufferGc->BitBlt(TPoint(0, 0), iMyBackgroundBitmap);

// Draw something else here onto backbuffer

.

.

.

// When drawing to backbuffer is done, update the view

DrawDeferred();

}



void CMyGameView:biggrin.gifraw(const TRect& /*aRect*/) const

{

CWindowGc& gc = SystemGc();

// Just draw the backbuffer to view

gc.BitBlt(Rect().iTl, iBackBufferBitmap);

}

来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/10294527/viewspace-126359/,如需转载,请注明出处,否则将追究法律责任。

转载于:http://blog.itpub.net/10294527/viewspace-126359/

通过短时倒谱(Cepstrogram)计算进行时-倒频分析研究(Matlab代码实现)内容概要:本文主要介绍了一项关于短时倒谱(Cepstrogram)计算在时-倒频分析中的研究,并提供了相应的Matlab代码实现。通过短时倒谱分析方法,能够有效提取信号在时间与倒频率域的特征,适用于语音、机械振动、生物医学等领域的信号处理与故障诊断。文中阐述了倒谱分析的基本原理、短时倒谱的计算流程及其在实际工程中的应用价值,展示了如何利用Matlab进行时-倒频图的可视化与分析,帮助研究人员深入理解非平稳信号的周期性成分与谐波结构。; 适合人群:具备一定信号处理基础,熟悉Matlab编程,从事电子信息、机械工程、生物医学或通信等相关领域科研工作的研究生、工程师及科研人员。; 使用场景及目标:①掌握倒谱分析与短时倒谱的基本理论及其与傅里叶变换的关系;②学习如何用Matlab实现Cepstrogram并应用于实际信号的周期性特征提取与故障诊断;③为语音识别、机械设备状态监测、振动信号分析等研究提供技术支持与方法参考; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,先理解倒谱的基本概念再逐步实现短时倒谱分析,注意参数设置如窗长、重叠率等对结果的影响,同时可将该方法与其他时频分析方法(如STFT、小波变换)进行对比,以提升对信号特征的理解能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值