Non-Greedy and Greedy Quantifier In Perl

本文详细对比了正则匹配中的贪心与非贪心方式,通过实例展示了不同匹配策略在实际应用中的效果,并提供了解决特定需求的代码示例。
比较以下两个正则匹配:
$_ = "fred and barney went bowling last night ";

1)贪心
/fred.+barney/
过程:首先匹配成功fred,然后.+匹配之后尽量多的信息,即:and barney went bowling last night,随后barney匹配不成功,于是.+往回到字母t,再次匹配barney,还是不成功,继续.+往回直到最后barney匹配成功。

2)非贪心
/fred.+?barney/ 
过程:首先匹配成功fred,然后.+匹配之后尽量少的信息,即:空格,随后barnay匹配不成功,于是.+往前倒a,再匹配barney,还是不成功,继续 .+往前直到最后barney匹配成功。

可以发现:如果fred和barney比较近的时候,用贪心方式效率更好;如果fred和barney分别再两端的时候,用非贪心方式效率更好。

又如:$_ = "I thought you said Fred and Velma, not  Wilma"
如果要删除的修饰符,则
1)s#.+#$1#g 
得到 I thought you said Fred and Velma, not  Wilma

2)s#.+?#$1#g
 得到 I thought you said Fred and Velma, not  Wilma

来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/24104518/viewspace-721956/,如需转载,请注明出处,否则将追究法律责任。

转载于:http://blog.itpub.net/24104518/viewspace-721956/

【SCI复现】含可再生能源与储能的区域微电网最优运行:应对不确定性的解鲁棒性与非预见性研究(Matlab代码实现)内容概要:本文围绕含可再生能源与储能的区域微电网最优运行展开研究,重点探讨应对不确定性的解鲁棒性与非预见性策略,通过Matlab代码实现SCI论文复现。研究涵盖多阶段鲁棒调度模型、机会约束规划、需求响应机制及储能系统优化配置,结合风电、光伏等可再生能源出力的不确定性建模,提出兼顾系统经济性与鲁棒性的优化运行方案。文中详细展示了模型构建、算法设计(如C&CG算法、大M法)及仿真验证全过程,适用于微电网能量管理、电力系统优化调度等领域的科研与工程实践。; 适合人群:具备一定电力系统、优化理论和Matlab编程基础的研究生、科研人员及从事微电网、能源管理相关工作的工程技术人员。; 使用场景及目标:①复现SCI级微电网鲁棒优化研究成果,掌握应对风光负荷不确定性的建模与求解方法;②深入理解两阶段鲁棒优化、分布鲁棒优化、机会约束规划等先进优化方法在能源系统中的实际应用;③为撰写高水平学术论文或开展相关课题研究提供代码参考和技术支持。; 阅读建议:建议读者结合文档提供的Matlab代码逐模块学习,重点关注不确定性建模、鲁棒优化模型构建与求解流程,并尝试在不同场景下调试与扩展代码,以深化对微电网优化运行机制的理解。
### Epsilon-Greedy Algorithm Implementation and Use Cases The epsilon-greedy algorithm is a strategy commonly used in reinforcement learning to balance exploration and exploitation. In this context, exploration refers to trying out new actions to discover potentially better outcomes, while exploitation involves selecting the action that has historically provided the best reward. #### Algorithm Implementation The epsilon-greedy policy selects a random action with probability ε (epsilon) and the greedy action (the one with the highest estimated value) with probability 1 - ε. This ensures that the agent does not always exploit known information but also explores other options to avoid getting stuck in suboptimal strategies[^2]. Below is an implementation of the epsilon-greedy algorithm in Python: ```python import numpy as np def epsilon_greedy_policy(Q, state, epsilon): if np.random.rand() < epsilon: # Exploration: Select a random action return np.random.choice(len(Q[state])) else: # Exploitation: Select the action with the highest value return np.argmax(Q[state]) ``` In this code snippet, `Q` represents the action-value function estimate for each state-action pair, `state` is the current state, and `epsilon` determines the likelihood of choosing a random action over the optimal one. #### Use Cases Epsilon-greedy algorithms are widely applied in various domains where decision-making under uncertainty is required. Some prominent use cases include: 1. **Reinforcement Learning**: The algorithm is fundamental in training agents to solve Markov Decision Processes (MDPs). For instance, it can be employed in games like chess or Go, where the agent must decide between exploring new moves or exploiting known winning strategies[^1]. 2. **Multi-Armed Bandit Problems**: These problems involve maximizing rewards by selecting among multiple options (or "arms") with unknown payoff distributions. Epsilon-greedy policies help determine which arm to pull next by balancing exploration and exploitation. 3. **Recommendation Systems**: In online recommendation systems, such as those used by streaming platforms or e-commerce websites, epsilon-greedy algorithms can suggest items to users. By occasionally recommending less popular items, the system can discover new preferences while primarily offering top-rated suggestions[^3]. 4. **Autonomous Driving**: Self-driving cars use reinforcement learning techniques to navigate roads safely. An epsilon-greedy approach might allow the vehicle to experiment with different driving styles during testing phases before settling on optimal behaviors[^4]. 5. **Resource Allocation**: In cloud computing environments, epsilon-greedy methods can optimize server allocation by dynamically adjusting resources based on historical performance metrics while exploring alternative configurations[^3].
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值