3D游戏编程实践——P&D 过河游戏智能帮助实现

本文详细介绍了使用C++实现P&D过河游戏的智能算法,包括状态图自动生成、图数据表示方法及最短路径算法SPFA的应用。通过构建状态转移矩阵,实现了游戏中的最优路径计算。

P&D 过河游戏智能帮助实现

需求

  • 实现状态图的自动生成
  • 讲解图数据在程序中的表示方法
  • 利用算法实现下一步的计算

实现过程

实现状态图的自动生成&讲解图数据在程序中的表示方法

牧师与魔鬼状态可以用一个三元组(O,P,D)来表示,分别表示当前船的位置(0表示在出发地,1表示在目的地),出发地牧师数量和出发地魔鬼数量,状态数一共是 2 ∗ 4 ∗ 4 = 32 2 * 4*4=32 244=32

我先用c++写了一个小程序构造出状态转移矩阵

首先求出每个状态下转移的邻接矩阵,转移表存储在数组 a [ 32 ] [ 32 ] a[32][32] a[32][32]中,如果状态i可以一步到达状态j,则 a [ i ] [ j ] = 1 a[i][j]=1 a[i][j]=1,否则 a [ i ] [ j ] = 0 a[i][j]=0 a[i][j]=0

int get(int o,int i,int j){ //将三元组转化成状态编号
    return o*16+i*4+j;
}
bool jud(int o,int i,int j){ //判断当前状态是否合法
    if (i<0||i>3||j<0||j>3) return 0;
    if ((i<j)&&(i!=0)) return 0;
    if ((3-i<3-j)&&(3-i!=0)) return 0;
    return 1;
}
#define rep(i,l,r) for (int i=l;i<=r;i++)
rep(o,0,1){
    rep(i,0,3){
        rep(j,0,3){
            int st=get(o,i,j);
            if (!jud(o,i,j)) continue;
            if (o==0){  //from 出发地的牧师和魔鬼只可能减少
                rep(dx,-2,0) rep(dy,-2,0) if (1<=abs(dx+dy)&&abs(dx+dy)<=2){
                    if (!jud(o^1,i+dx,j+dy)) continue;
                    a[get(o,i,j)][get(o^1,i+dx,j+dy)]=1;
                }
            }
            else { //to 出发地的牧师和魔鬼只可能增加
                rep(dx,0,2) rep(dy,0,2) if (1<=dx+dy&&dx+dy<=2){
                    if (!jud(o^1,i+dx,j+dy)) continue;
                    a[get(o,i,j)][get(o^1,i+dx,j+dy)]=1;
                }
            }
        }
    }
}

然后用最短路算法spfa求出所有状态到终点(1,0,0)的最短路距离

rep(o,0,1) rep(i,0,3) rep(j,0,3) dis[get(o,i,j)]=inf; 
dis[get(1,0,0)]=0;
queue<int> q; q.push(get(1,0,0)); vis[get(1,0,0)]=1; 
while (!q.empty()){
    int u=q.front(); q.pop(); vis[u]=0;
    int uo=u/16,ux=(u%16)/4,uy=u%4;
    rep(i,-2,2) rep(j,-2,2) {
        int vo=uo^1,vx=ux+i,vy=uy+j;
        int v=get(vo,ux+i,uy+j);
        if (jud(vo,vx,vy)&&a[v][u]&&dis[v]>dis[u]+1){  
            //如果状态v能到达状态u且能够更新状态v的距离
            dis[v]=dis[u]+1;
            if (!vis[v]) vis[v]=1,q.push(v);
        }
    }
}

我们只需要保留在最短路图上的边并输出

rep(o,0,1) rep(i,0,3) rep(j,0,3){
    rep(x,0,3) rep(y,0,3) {
        if (dis[get(o,x,y)]==dis[get(o^1,i,j)]+1&&a[get(o,x,y)][get(o^1,i,j)]) a[get(o,x,y)][get(o^1,i,j)]=1;
        else a[get(o,x,y)][get(o^1,i,j)]=0;
    }
}
rep(o,0,1) rep(i,0,3) rep(j,0,3){
    printf("{");
    rep(no,0,1) rep(x,0,3) rep(y,0,3) {
        printf("%d",a[get(o,i,j)][get(no,x,y)]);
        if (x==3&&y==3&&no==1) printf("},\n");
        else printf(",");
    }
}
状态转移矩阵
{{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
            {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
            {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
            {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
            {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
            {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
            {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
            {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
            {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
            {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
            {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0},
            {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
            {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
            {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0},
            {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0},
            {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0},
            {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
            {0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
            {0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
            {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
            {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
            {0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
            {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
            {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
            {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
            {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
            {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
            {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
            {0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
            {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
            {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
            {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}}

在游戏中通过这张状态表就可以得知下一步应该到达哪一个状态了。

利用算法实现下一步的计算

在之前作业5中(https://blog.youkuaiyun.com/ctlchild/article/details/101454426

加入类AI,其中实现了函数tip,读取起点终点的牧师魔鬼数量,船的状态,计算出当前的状态,并根据转移表选择下一步的选择。

public int tip(CoastCon fromCoast,CoastCon toCoast,BoatCon boat) {	
    int fromP = 0, fromD = 0, toP = 0, toD = 0, boatst = 0;
    int[] fromCount = fromCoast.getCharacterNum();
    fromP += fromCount[0];
    fromD += fromCount[1];

    int[] toCount = toCoast.getCharacterNum ();
    toP += toCount[0];
    toD += toCount[1];

    int[] boatCount = boat.getCharacterNum ();
    if (boat.getStatus ()==-1) boatst=1;
    else boatst=0;
    if (boat.getStatus () == -1) {
        toP += boatCount[0]; toD += boatCount[1];	// boat at toCoast
    }
    else {
        fromP += boatCount[0]; fromD += boatCount[1];	// boat at fromCoast	
    }
    Debug.Log(fromP.ToString()+' '+fromD.ToString()+' '+get(boatst,fromP,fromD).ToString());
    for (int o=0;o<=1;o++)
        for (int i=0;i<=3;i++) 
            for (int j=0;j<=3;j++) 
                if (trans[get(boatst,fromP,fromD),get(o,i,j)]==1) return get(boatst,i,j);

    return -1;
}

运行效果

在这里插入图片描述

考虑柔性负荷的综合能源系统低碳经济优化调度【考虑碳交易机制】(Matlab代码实现)内容概要:本文围绕“考虑柔性负荷的综合能源系统低碳经济优化调度”展开,重点研究在碳交易机制下如何实现综合能源系统的低碳化与经济性协同优化。通过构建包含风电、光伏、储能、柔性负荷等多种能源形式的系统模型,结合碳交易成本与能源调度成本,提出优化调度策略,以降低碳排放并提升系统运行经济性。文中采用Matlab进行仿真代码实现,验证了所提模型在平衡能源供需、平抑可再生能源波动、引导柔性负荷参与调度等方面的有效性,为低碳能源系统的设计与运行提供了技术支撑。; 适合人群:具备一定电力系统、能源系统背景,熟悉Matlab编程,从事能源优化、低碳调度、综合能源系统等相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①研究碳交易机制对综合能源系统调度决策的影响;②实现柔性负荷在削峰填谷、促进可再生能源消纳中的作用;③掌握基于Matlab的能源系统建模与优化求解方法;④为实际综合能源项目提供低碳经济调度方案参考。; 阅读建议:建议读者结合Matlab代码深入理解模型构建与求解过程,重点关注目标函数设计、约束条件设置及碳交易成本的量化方式,可进一步扩展至多能互补、需求响应等场景进行二次开发与仿真验证。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值