print('loading checkpoint.......')
model_dict = model.state_dict()
pretrained_dict = torch.load(weight_path)
pretrained_dict = {k:v for k, v in pretrained_dict.items() if k in model_dict}
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
print('loaded successfully!')
另:
def load_param(self, model_path):
param_dict = torch.load(model_path)
for i in param_dict:
if 'fc' in i:
continue
self.state_dict()[i].copy_(param_dict[i])
本文介绍了两种加载预训练模型的方法。第一种方法使用PyTorch的state_dict进行参数加载,通过匹配模型字典和预训练权重来实现。第二种方法通过定义load_param函数,逐层复制参数,对于全连接层(fc)则跳过加载。
170





