计算几何算法概览——算法篇之位置关系

一。位置关系:
 4.折线段的拐向判断:
  折线段的拐向判断方法可以直接由矢量叉积的性质推出。对于有公共端点的线段p0p1
和p1p2,通过计算(p2 - p0) × (p1 - p0)的符号便可以确定折线段的拐向:
  若(p2 - p0) × (p1 - p0) > 0,则p0p1在p1点拐向右侧后得到p1p2。
  若(p2 - p0) × (p1 - p0) < 0,则p0p1在p1点拐向左侧后得到p1p2。
  若(p2 - p0) × (p1 - p0) = 0,则p0、p1、p2三点共线。
  具体情况可参照下图:
   
 5.判断点是否在线段上:
  设点为Q,线段为P1P2 ,判断点Q在该线段上的依据是:( Q - P1 ) × ( P2 - P1 ) = 0 且 Q 在以 P1,P2
为对角顶点的矩形内。前者保证Q点在直线P1P2上,后者是保证Q点不在线段P1P2的延长线或反向延长线上
,对于这一步骤的判断可以用以下过程实现:
  ON-SEGMENT(pi,pj,pk)
  if min(xi,xj) <= xk <= max(xi,xj) and min(yi,yj) <= yk <= max(yi,yj)
  then return true;
  else return false;
  特别要注意的是,由于需要考虑水平线段和垂直线段两种特殊情况,min(xi,xj)<=xk<=max(xi,xj)和min(yi,yj)
<=yk<=max(yi,yj)两个条件必须同时满足才能返回真值。
 6.判断两线段是否相交:
  我们分两步确定两条线段是否相交:
  (1)快速排斥试验
    设以线段 P1P2 为对角线的矩形为R, 设以线段 Q1Q2 为对角线的矩形为T,如
果R和T不相交,显然两线段不会相交。
  (2)跨立试验
    如果两线段相交,则两线段必然相互跨立对方。若P1P2跨立Q1Q2 ,则矢量 ( P1 - Q1 )
和( P2 - Q1 )位于矢量( Q2 - Q1 ) 的两侧,即( P1 - Q1 ) × ( Q2 - Q1 ) * ( P2 - Q1 ) × ( Q2 - Q1 ) < 0。
上式可改写成( P1 - Q1 ) × ( Q2 - Q1 ) * ( Q2 - Q1 ) × ( P2 - Q1 ) > 0。
当 ( P1 - Q1 ) × ( Q2 - Q1 ) = 0 时,说明 ( P1 - Q1 ) 和 ( Q2 - Q1 )共线,但是因为已经通过快速排斥试验,
所以 P1 一定在线段 Q1Q2上;同理,( Q2 - Q1 ) ×(P2 - Q1 ) = 0 说明 P2 一定在线段 Q1Q2上。所以
判断P1P2跨立Q1Q2的依据是:( P1 - Q1 ) × ( Q2 - Q1 ) * ( Q2 - Q1 ) × ( P2 -
Q1 ) >= 0。同理判断Q1Q2跨立P1P2的依据是:( Q1 - P1 ) × ( P2 - P1 ) * ( P2 - P1 ) × ( Q2 - P1 ) >= 0。
具体情况如下图所示:
   
  在相同的原理下,对此算法的具体的实现细节可能会与此有所不同,除了这种过程
外,大家也可以参考《算法导论》上的实现。
 7.判断线段和直线是否相交:
  有了上面的基础,这个算法就很容易了。如果线段P1P2和直线Q1Q2相交,则P1P2跨立
Q1Q2,即:( P1 - Q1 ) × ( Q2 - Q1 ) * ( Q2 - Q1 ) × ( P2 - Q1 ) >= 0。
 8.判断矩形是否包含点:
  只要判断该点的横坐标和纵坐标是否夹在矩形的左右边和上下边之间。
   
 9.判断线段、折线、多边形是否在矩形中:
  因为矩形是个凸集,所以只要判断所有端点是否都在矩形中就可以了。
10.判断矩形是否在矩形中:
  只要比较左右边界和上下边界就可以了。
11.判断圆是否在矩形中:
  很容易证明,圆在矩形中的充要条件是:圆心在矩形中且圆的半径小于等于圆心到矩
  形四边的距离的最小值。
12.判断点是否在多边形中:
13.判断点P是否在多边形中是计算几何中一个非常基本但是十分重要的算法。以点P为端
 点,向左方作射线L,由于多边形是有界的,所以射线L的左端一定在多边形外,考虑沿着
 L从无穷远处开始自左向右移动,遇到和多边形的第一个交点的时候,进入到了多边形的
 内部,遇到第二个交点的时候,离开了多边形,……所以很容易看出当L和多边形的交点
 数目C是奇数的时候,P在多边形内,是偶数的话P在多边形外。
  但是有些特殊情况要加以考虑。如图下图(a)(b)(c)(d)所示。在图(a)中,L和多边形
 的顶点相交,这时候交点只能计算一个;在图(b)中,L和多边形顶点的交点不应被计算;
 在图(c)和(d) 中,L和多边形的一条边重合,这条边应该被忽略不计。如果L和多边形的
 一条边重合,这条边应该被忽略不计。
   
  为了统一起见,我们在计算射线L和多边形的交点的时候,1。对于多边形的水平边不
 作考虑;2。对于多边形的顶点和L相交的情况,如果该顶点是其所属的边上纵坐标较大的
 顶点,则计数,否则忽略;3。对于P在多边形边上的情形,直接可判断P属于多边行。由
 此得出算法的伪代码如下:
    count ← 0;
    以P为端点,作从右向左的射线L;
    for 多边形的每条边s
     do if P在边s上
          then return true;
        if s不是水平的
          then if s的一个端点在L上
                 if 该端点是s两端点中纵坐标较大的端点
                   then count ← count+1
               else if s和L相交
                 then count ← count+1;
    if count mod 2 = 1
      then return true;
    else return false;

  其中做射线L的方法是:设P'的纵坐标和P相同,横坐标为正无穷大(很大的一个正数),则P和P'
就确定了射线L。
14.判断点是否在多边形中的这个算法的时间复杂度为O(n)。
  另外还有一种算法是用带符号的三角形面积之和与多边形面积进行比较,这种算法由
  于使用浮点数运算所以会带来一定误差,不推荐大家使用。
15.判断线段是否在多边形内:
  线段在多边形内的一个必要条件是线段的两个端点都在多边形内,但由于多边形可能
 为凹,所以这不能成为判断的充分条件。如果线段和多边形的某条边内交(两线段内交是
 指两线段相交且交点不在两线段的端点),因为多边形的边的左右两侧分属多边形内外不
 同部分,所以线段一定会有一部分在多边形外(见图a)。于是我们得到线段在多边形内的
  第二个必要条件:线段和多边形的所有边都不内交。
  线段和多边形交于线段的两端点并不会影响线段是否在多边形内;但是如果多边形的
某个顶点和线段相交,还必须判断两相邻交点之间的线段是否包含于多边形内部(反例见
图b)。
   
  因此我们可以先求出所有和线段相交的多边形的顶点,然后按照X-Y坐标排序(X坐标
小的排在前面,对于X坐标相同的点,Y坐标小的排在前面,这种排序准则也是为了保证水
平和垂直情况的判断正确),这样相邻的两个点就是在线段上相邻的两交点,如果任意相
邻两点的中点也在多边形内,则该线段一定在多边形内。
  证明如下:
 
  命题1:
    如果线段和多边形的两相邻交点P1 ,P2的中点P' 也在多边形内,则P1, P2之间
的所有点都在多边形内。
    
  证明:
    假设P1,P2之间含有不在多边形内的点,不妨设该点为Q,在P1, P'之间,因为多
边形是闭合曲线,所以其内外部之间有界,而P1属于多边行内部,Q属于多边性外部,
P'属于多边性内部,P1-Q-P'完全连续,所以P1Q和QP'一定跨越多边形的边界,因此在
P1,P'之间至少还有两个该线段和多边形的交点,这和P1P2是相邻两交点矛盾,故命题成
立。证毕。
  由命题1直接可得出推论:
  推论2:
    设多边形和线段PQ的交点依次为P1,P2,……Pn,其中Pi和Pi+1是相邻两交点,线
段PQ在多边形内的充要条件是:P,Q在多边形内且对于i =1, 2,……, n-1,Pi ,Pi+1的
中点也在多边形内。
  在实际编程中,没有必要计算所有的交点,首先应判断线段和多边形的边是否内交,
倘若线段和多边形的某条边内交则线段一定在多边形外;如果线段和多边形的每一条边都
不内交,则线段和多边形的交点一定是线段的端点或者多边形的顶点,只要判断点是否在
线段上就可以了。
  至此我们得出算法如下:
    if 线端PQ的端点不都在多边形内
      then return false;
    点集pointSet初始化为空;
    for 多边形的每条边s
      do if 线段的某个端点在s上
           then 将该端点加入pointSet;
         else if s的某个端点在线段PQ上
           then 将该端点加入pointSet;
         else if s和线段PQ相交 // 这时候已经可以肯定是内交了
           then return false;
    将pointSet中的点按照X-Y坐标排序;
    for pointSet中每两个相邻点 pointSet[i] , pointSet[ i+1]
      do if pointSet[i] , pointSet[ i+1] 的中点不在多边形中
           then return false;
    return true;
  这个过程中的排序因为交点数目肯定远小于多边形的顶点数目n,所以最多是常数级
的复杂度,几乎可以忽略不计。因此算法的时间复杂度也是O(n)。
16.判断折线是否在多边形内:
  只要判断折线的每条线段是否都在多边形内即可。设折线有m条线段,多边形有n个顶
点,则该算法的时间复杂度为O(m*n)。
17.判断多边形是否在多边形内:
  只要判断多边形的每条边是否都在多边形内即可。判断一个有m个顶点的多边形是否
在一个有n个顶点的多边形内复杂度为O(m*n)。
18.判断矩形是否在多边形内:
  将矩形转化为多边形,然后再判断是否在多边形内。
19.判断圆是否在多边形内:
  只要计算圆心到多边形的每条边的最短距离,如果该距离大于等于圆半径则该圆在多
边形内。计算圆心到多边形每条边最短距离的算法在后文阐述。
20.判断点是否在圆内:
  计算圆心到该点的距离,如果小于等于半径则该点在圆内。
21.判断线段、折线、矩形、多边形是否在圆内:
  因为圆是凸集,所以只要判断是否每个顶点都在圆内即可。
22.判断圆是否在圆内:
  设两圆为O1,O2,半径分别为r1, r2,要判断O2是否在O1内。先比较r1,r2的大小,
如果r1<r2则O2不可能在O1内;否则如果两圆心的距离大于r1 - r2 ,则O2不在O1内;否
则O2在O1内。
㈠ 点的基本运算 1. 平面上两点之间距离 1 2. 判断两点是否重合 1 3. 矢量乘 1 4. 矢量点乘 2 5. 判断点是否在线上 2 6. 求一点饶某点旋转后的坐标 2 7. 求矢量夹角 2 ㈡ 线及直线的基本运算 1. 点与线关系 3 2. 求点到线所在直线垂线的垂足 4 3. 点到线的最近点 4 4. 点到线所在直线的距离 4 5. 点到折线集的最近距离 4 6. 判断圆是否在多边形内 5 7. 求矢量夹角余弦 5 8. 求线之间的夹角 5 9. 判断线是否相交 6 10.判断线是否相交但不交在端点处 6 11.求线所在直线的方程 6 12.求直线的斜率 7 13.求直线的倾斜角 7 14.求点关于某直线的对称点 7 15.判断两条直线是否相交及求直线交点 7 16.判断线是否相交,如果相交返回交点 7 ㈢ 多边形常用算法模块 1. 判断多边形是否简单多边形 8 2. 检查多边形顶点的凸凹性 9 3. 判断多边形是否凸多边形 9 4. 求多边形面 9 5. 判断多边形顶点的排列方向,方法一 10 6. 判断多边形顶点的排列方向,方法二 10 7. 射线法判断点是否在多边形内 10 8. 判断点是否在凸多边形内 11 9. 寻找点集的graham算法 12 10.寻找点集凸包的卷包裹法 13 11.判断线是否在多边形内 14 12.求简单多边形的重心 15 13.求凸多边形的重心 17 14.求肯定在给定多边形内的一个点 17 15.求从多边形外一点出发到该多边形的切线 18 16.判断多边形的核是否存在 19 ㈣ 圆的基本运算 1 .点是否在圆内 20 2 .求不共线的三点所确定的圆 21 ㈤ 矩形的基本运算 1.已知矩形三点坐标,求第4点坐标 22 ㈥ 常用算法的描述 22 ㈦ 补充 1.两圆关系: 24 2.判断圆是否在矩形内: 24 3.点到平面的距离: 25 4.点是否在直线同侧: 25 5.镜面反射线: 25 6.矩形包含: 26 7.两圆交点: 27 8.两圆公共面: 28 9. 圆和直线关系: 29 10. 内切圆: 30 11. 求切点: 31 12. 线的左右旋: 31
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值