HashMap resize源码分析(JDK8)

本文深入探讨了HashMap在Java中的扩容机制,包括如何判断何时需要扩容、扩容的具体过程以及数据迁移的实现细节。特别关注了当旧容量达到最大值时的行为,以及在不同条件下新阈值的计算方式。
final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        //如果是旧对象大小不为0,则判断是否超过最大值,是则返回最大值,否则扩容*2
        if (oldCap > 0) {
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        //如果旧对象大小为0且旧阈值大于零,说明初始容量已放入阈值
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults 零初始阈值表示使用默认值
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        //如果新阈值为零,则新分配大小重新计算
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        if (oldTab != null) {
            //旧map不为空,循环迁移数据
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)
                        //对象不为空,且只有一个对象,则直接迁移
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        //链表长度大于等于8的时候会转换成红黑树
                    //则在红黑树结构上进行rehash在放到新的地方

                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        /** 
                         * 对象链表长度为2-7之间,会进入这里,判断逻辑是
                         * 因为每次扩容都是原容量*2,即都是initCap*2^n(2的n次幂)
                         * 假设old=initCap*2^n,则new=initCap*2^(n+1)
                         * 如果old&hash==0,而(old-1)&hash==index(index也就是j,get/put都可以看到j=(size-1)&hash)
                         * 证明如下(假设old为16)则:0x10000&hash==0, 0x1111&hash==index --> 0x11111&hash=index
                         * 0x10000&hash!=0, 0x1111&hash==index --> 0x11111&hash=0x10000 + index = old + index
                         * 以上,同理初始化大小无论是否是2的等次幂,只要扩容的递增大小都是2的等次幂都适用此证明。
                    **/

                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }
<think>嗯,用户让我介绍一下JDK8HashMap的源码。首先,我得先回想一下HashMap的基本结构。在JDK8之前,HashMap是数组加链表的结构,当哈希冲突较多时,链表会变得很长,查询效率会下降。而JDK8之后,当链表长度超过8时,会转为红黑树,这样查询的时间复杂度就从O(n)变成O(log n)了。这个优化应该是个重点。 接下来,我需要考虑HashMap的几个核心部分:数据结构、哈希计算、put方法、扩容机制、红黑树转换条件等。用户可能对这些部分感兴趣,特别是和之前版本不同的地方,比如红黑树的引入。 然后,数据结构方面,HashMap内部有一个Node数组,每个Node可能是一个链表节点或者树节点。需要解释一下Node类的结构,包括hash、key、value、next这些属性。当链表转成树时,会用TreeNode,这可能继承自LinkedHashMap的Entry,但具体的继承关系可能需要查证一下。 哈希计算方面,JDK8的hash方法做了优化,将高位的信息也参与到索引的计算中,减少哈希冲突。具体来说,hashCode()的高16位和低16位进行异或,这样在数组长度较小时,高位的变化也能影响最终的索引位置,减少碰撞。 put方法的流程是关键。当插入一个键值对时,首先计算哈希值,找到数组下标。如果该位置为空,直接插入;如果是链表或树节点,则遍历查找是否存在相同的key,存在则替换,否则添加到链表末尾或树中。当链表长度达到8且数组长度大于等于64时,链表转红黑树,否则进行扩容。这个阈值需要注意,可能用户会问到为什么是8或者64。 扩容机制,也就是resize方法。当元素数量超过容量乘以负载因子时,数组会扩容为原来的两倍。扩容后,原来的节点会重新计算位置,要么在原位置,要么原位置+旧容量。这里可能涉及到高位判断,通过(e.hash & oldCap)是否为0来决定位置。同时,在JDK8中,链表在扩容时会被拆分成两个链表,保持顺序,避免死循环的问题,而JDK7之前可能因为头插法导致死循环。 线程安全方面,HashMap不是线程安全的,多线程环境下可能出现问题,比如数据覆盖、死循环(在JDK7中)等。需要提到ConcurrentHashMap或者使用Collections.synchronizedMap来保证线程安全。 另外,初始容量和负载因子的默认值,初始容量是16,负载因子0.75,这些参数的作用和调整的影响也需要解释一下。比如负载因子高可以减少空间开销,但增加查找成本;负载因子低则相反。 红黑树转换的条件需要明确,链表长度超过8且数组长度至少64才会转换,否则只是扩容。这是为了避免在哈希表还很小的时候,不必要的树化,因为扩容可能更有效。 可能用户还想知道源码中的一些具体实现细节,比如TreeNode的结构,红黑树的插入、删除操作是如何实现的,但可能这部分太深入,需要根据用户的背景决定是否展开。 在解释的时候,需要注意避免过于技术化的术语,用比较易懂的语言,同时结合代码结构,比如putVal方法、resize方法的关键步骤。可能还需要提到modCount用于快速失败机制,迭代器在检测到结构变化时抛出异常。 用户可能的疑问点包括:为什么选择红黑树而不是其他数据结构?为什么阈值是8扩容为什么是两倍?这些可能需要准备答案,比如红黑树在查询和插入之间取得平衡,阈值8是基于泊松分布统计,两倍扩容是为了保持容量为2的幂,方便位运算计算索引。 总结下来,应该按照数据结构、哈希计算、put流程、扩容机制、树化条件、线程安全等方面来组织回答,重点突出JDK8的改进,比如红黑树的引入和扩容优化。</think>在 JDK8 中,`HashMap` 是一个基于哈希表实现的键值对容器,其源码设计在性能和数据结构上进行了优化(如引入红黑树)。以下是对其核心实现的介绍: --- ### **1. 数据结构** JDK8 的 `HashMap` 使用 **数组 + 链表 + 红黑树** 的复合结构: - **数组(`Node<K,V>[] table`)**:存储链表的头节点或红黑树的根节点。 - **链表(Node)**:解决哈希冲突的基础结构,每个节点存储键值对和下一个节点的引用。 - **红黑树(TreeNode)**:当链表长度超过阈值(默认 8)且数组长度 ≥ 64 时,链表转换为红黑树,提升查询效率。 ```java static class Node<K,V> implements Map.Entry<K,V> { final int hash; // 哈希值 final K key; V value; Node<K,V> next; // 链表的下一个节点 } ``` -- ### **2. 哈希计算** 通过 `hash()` 方法将键的哈希码分散到数组中,减少碰撞: ```java static final int hash(Object key) { int h; // 高16位与低16位异或,增加低位的随机性 return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); } ``` -- ### **3. `put()` 方法流程** 1. **计算哈希值**:根据 `key` 计算哈希值,确定数组下标 `(n-1) & hash`。 2. **处理空桶**:若目标位置为空,直接插入新节点。 3. **处理冲突**: - **链表**:遍历链表,若 `key` 已存在则更新值,否则添加到链表尾部。 - **红黑树**:调用树的插入方法。 4. **树化检查**:链表长度 ≥ 8 时尝试树化(需数组长度 ≥ 64,否则优先扩容)。 5. **扩容检查**:元素总数超过 `容量 * 负载因子`(默认 0.75)时触发扩容。 --- ### **4. 扩容机制(`resize()`)** - **新容量**:原容量的 2 倍(保持为 2 的幂)。 - **数据迁移**: - 链表节点根据 `(e.hash & oldCap)` 是否为 0 分配到原位置或新位置。 - 红黑树节点会拆分为两个链表,若长度 ≤ 6 则退化为链表。 -- ### **5. 红黑树转换条件** - **链表 → 红黑树**:链表长度 ≥ 8 **且** 数组长度 ≥ 64。 - **红黑树 → 链表**:树节点数 ≤ 6 时退化为链表。 --- ### **6. 关键参数** - **默认初始容量**:16。 - **负载因子(`loadFactor`)**:默认 0.75(平衡空间与时间效率)。 - **扩容阈值**:`容量 * 负载因子`。 - **树化阈值**:链表长度 ≥ 8,数组长度 ≥ 64。 --- ### **7. 线程安全性** `HashMap` **非线程安全**,多线程操作可能导致数据不一致。替代方案: - 使用 `ConcurrentHashMap`。 - 通过 `Collections.synchronizedMap()` 包装。 -- ### **8. 性能优化点** - **红黑树**:避免长链表的低效查询(时间复杂度从 O(n) 优化到 O(log n))。 - **高位异或哈希**:减少哈希碰撞。 - **扩容优化**:避免 JDK7 及之前版本的头插法导致的死循环问题。 -- ### **源码分析示例(简化的 `put()` 流程)** ```java public V put(K key, V value) { return putVal(hash(key), key, value, false, true); } final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<K,V>[] tab; Node<K,V> p; int n, i; // 初始化或扩容 if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; // 计算桶位置 if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null); // 直接插入 else { // 处理哈希冲突... } // 检查扩容... } ``` --- 通过以上设计,JDK8 的 `HashMap` 在高并发和高负载场景下显著提升了性能,同时保持了合理的空间利用率。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值