线性方程组求解——预处理Preconditioning介绍

为什么需要预处理?

工程中出现的大规模线性方程组往往是病态的, 对数值求解带来很大的困难:
▶ 使得迭代法(比如Krylov 子空间迭代法) 收敛变得非常缓慢
▶ 对数值解的精度产生很大的影响(在有限精度计算情形下)
对于第一个问题, 当前的有效处理方法是预处理, 预处理是当前公认的能有效改善迭代法(特别是Krylov 子空间迭代法) 收敛性质的有效手段.

什么是预处理

通俗地说, 预处理就是将难以求解的问题转化成等价容易求解的新问题
 对于线性方程组而言, 预处理就是对(病态) 系数矩阵进行适当的线性变换,转换为一个(良态) 新矩阵, 从而达到改善迭代法收敛性的目的.
 

预处理子选取基本准则:

一个好的预处理子P 通常需满足下面两个要求:
(1) P^{-1} A具有更小的条件数和(或) 更好的特征值分布; P是A的一个很好的近似。
(2) 线性方程组Pz = r 容易求解, 即预处理子P 的使用成本低廉.
▶ 第一条是为了确保预处理后的线性方程组更容易求解, 即预处理子有效
▶ 第二条是因为在用Krylov 子空间方法求解预处理后的方程组时, 每步

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值