官方HBase-MapReduce
查看HBase的MapReduce任务的所需的依赖
bin/hbase mapredcp
执行环境变量的导入
$ export HBASE_HOME=/opt/module/hbase-1.3.1
$ export HADOOP_CLASSPATH = ``${HBASE_HOME}/bin/hbase mapredcp `
运行官方的MapReduce任务
– 案例一:统计Student表中有多少行数据
==$ /opt/module/hadoop-2.8.4/bin/yarn jar lib/hbase-server-1.3.1.jar rowcounter ns_ct:calllog=
案例二:使用MapReduce将本地数据导入到HBase
(1) 在本地创建一个tsv格式的文件:city.tsv,自己建表用\t分割数据
1001 BeiJing China
1002 New York TUS
1003 ShangHai China
尖叫提示:上面的这个数据不要从word中直接复制,有格式错误
(2) 创建HBase表
hbase(main):001:0> create ‘city’,'cf’
(3) 在HDFS中创建input_fruit文件夹并上传city.tsv文件
$ /opt/module/hadoop-2.8.4/bin/hdfs dfs -mkdir /hbase_test/
$ /opt/module/hadoop-2.8.4/bin/hdfs dfs -put city.tsv /hbase_test/
(4) 执行MapReduce到HBase的fruit表中
$ /opt/module/hadoop-2.8.4/bin/yarn jar lib/hbase-server-1.3.1.jar importtsv
-Dimporttsv.columns=HBASE_ROW_KEY,cf:name,cf:countries city
hdfs://bigdata11:9000/hbase_test
(5) 使用scan命令查看导入后的结果
base(main):001:0> scan 'city’
HBase2HBase
目标:将city表中的一部分数据,通过MR迁入到city_mr表中。
分步实现:
(1) 构建HBaseMapper类,用于读取city表中的数据
public class HBaseMapper extends TableMapper<ImmutableBytesWritable, Put> {
@Override
protected void map(ImmutableBytesWritable key, Result value, Context context) throws IOException, InterruptedException {
//将city的name和color提取出来,相当于将每一行数据读取出来放入到Put对象中。
Put put = new Put(key.get());
//遍历添加column行
for (Cell cell : value.rawCells()){
//添加/克隆列族:cf
if ("cf".equals(Bytes.toString(CellUtil.cloneFamily(cell)))){
//添加/克隆列:name
if ("name".equals(Bytes.toString(CellUtil.cloneQualifier(cell)))){
//将该列cell加入到put对象中
put.add(cell);
}
}
}
//将从fruit读取到的每行数据写入到context中作为map的输出
context.write(key,put);
}
}
2) 构建HBaseReduce类,用于将读取到的fruit表中的数据写入到city_mr表中
public class HBaseReduce extends TableReducer<ImmutableBytesWritable, Put, NullWritable> {
@Override
protected void reduce(ImmutableBytesWritable key, Iterable<Put> values, Context context) throws IOException, InterruptedException {
//将map获取的数据写入到对应的文件中
for (Put put : values){
context.write(NullWritable.get(),put);
}
}
}
3) 构建 CityToCity_mr extends Configured implements Tool用于组装运行Job任务
public class CityToCity_mr extends Configured implements Tool {
public int run(String[] strings) throws Exception {
//获取配置文件
Configuration conf = this.getConf();
//创建job任务
Job job = Job.getInstance(conf,getClass().getSimpleName());
job.setJarByClass(CityToCity_mr.class);
//创建扫描器
Scan scan = new Scan();
//设置Mapper,注意导入的是mapreduce包下的,不是mapred包下的,后者是老版本
TableMapReduceUtil.initTableMapperJob(
//读数据的表
"City",
//扫描器
scan,
//设置map类
HBaseMapper.class,
//设置输出数据类型
ImmutableBytesWritable.class,
Put.class,
//配置job
job
);
//配置Reduce
TableMapReduceUtil.initTableReducerJob(
//将数据写到City_mr中
"city_mr",
//设置Reduce类
HBaseReduce.class,
//配置给job任务
job
);
//设置Reduce数量,最少1个
job.setNumReduceTasks(1);
boolean status = job.waitForCompletion(true);
if (status){
return 0;
}else {
return 1;
}
}
public static void main(String[] args) throws Exception {
Configuration conf = HBaseConfiguration.create();
int status = ToolRunner.run(conf, new CityToCity_mr(), args);
System.exit(status);
}
}
打包运行任务
尖叫提示:运行任务前,如果待数据导入的表不存在,则需要提前创建之。
HDFS2HBase
目标:实现将HDFS中的数据写入到HBase表中。
分步实现:
构建HDFS2HBaseMapper于读取HDFS中的文件数据
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class HDFS2HBaseMapper extends Mapper<LongWritable, Text, ImmutableBytesWritable, Put> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//从HDFS中读取数据
String lineValue = value.toString();
//读取出来的每行数据使用\t进行分割,存于String数组
String[] values = lineValue.split("\t");
//根据数据中值的含义进行取值 1001 apple red
String rowkey = values[0];
String name = values[1];
String color = values[2];
//初始化rowkey
ImmutableBytesWritable immutableBytesWritable = new ImmutableBytesWritable(Bytes.toBytes(rowkey));
//初始化put
Put put = new Put(Bytes.toBytes(rowkey));
//参数分别:列蔟,列,值
put.add(Bytes.toBytes("info"),Bytes.toBytes("name"),Bytes.toBytes("name"));
put.add(Bytes.toBytes("info"),Bytes.toBytes("color"),Bytes.toBytes("color"));
context.write(immutableBytesWritable,put);
}
}
构建HDFS2HBaseReduce类
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.io.NullWritable;
import java.io.IOException;
public class HDFS2HBaseReduce extends TableReducer<ImmutableBytesWritable, Put, NullWritable> {
@Override
protected void reduce(ImmutableBytesWritable key, Iterable<Put> values, Context context) throws IOException, InterruptedException {
//读出来的每一行数据写入到 fruit_hdfs 表中
for (Put put : values){
context.write(NullWritable.get(),put);
}
}
}
创建HDFS2HBase组装Job
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import java.io.IOException;
public class HDFS2HBase extends Configured implements Tool {
public int run(String[] strings) throws Exception {
String args = "hdfs://bigdata11:9000/input_fruit/fruit.tsv";
//得到Configuration
Configuration conf = this.getConf();
//创建job任务
Job job = Job.getInstance(conf, getClass().getSimpleName());
job.setJarByClass(HDFS2HBase.class);
Path path = new Path(args);
FileInputFormat.addInputPath(job,path);
//设置Mapper
job.setMapperClass(HBaseMapper.class);
job.setMapOutputKeyClass(ImmutableBytesWritable.class);
job.setMapOutputValueClass(Put.class);
//设置Reduce
TableMapReduceUtil.initTableReducerJob("fruit_hdfs",HBaseReduce.class,job);
//设置Reduce个数
job.setNumReduceTasks(1);
boolean isSuccess = job.waitForCompletion(true);
if (!isSuccess){
throw new IOException("Job running with error");
}
return isSuccess? 0 : 1;
}
public static void main(String[] args) throws Exception {
Configuration conf = HBaseConfiguration.create();
int status = ToolRunner.run(conf, new HDFS2HBase(), args);
System.exit(status);
}
}
打包运行
尖叫提示:运行任务前,如果待数据导入的表不存在,则需要提前创建之。