CentOS7使用firewalld打开关闭防火墙与端口

1、firewalld的基本使用
启动: systemctl start firewalld
查看状态: systemctl status firewalld 
停止: systemctl disable firewalld
禁用: systemctl stop firewalld
 
2.systemctl是CentOS7的服务管理工具中主要的工具,它融合之前service和chkconfig的功能于一体。

启动一个服务:systemctl start firewalld.service
关闭一个服务:systemctl stop firewalld.service
重启一个服务:systemctl restart firewalld.service
显示一个服务的状态:systemctl status firewalld.service
在开机时启用一个服务:systemctl enable firewalld.service
在开机时禁用一个服务:systemctl disable firewalld.service
查看服务是否开机启动:systemctl is-enabled firewalld.service
查看已启动的服务列表:systemctl list-unit-files|grep enabled
查看启动失败的服务列表:systemctl --failed

3.配置firewalld-cmd

查看版本: firewall-cmd --version
查看帮助: firewall-cmd --help
显示状态: firewall-cmd --state
查看所有打开的端口: firewall-cmd --zone=public --list-ports
更新防火墙规则: firewall-cmd --reload
查看区域信息:  firewall-cmd --get-active-zones
查看指定接口所属区域: firewall-cmd --get-zone-of-interface=eth0
拒绝所有包:firewall-cmd --panic-on
取消拒绝状态: firewall-cmd --panic-off
查看是否拒绝: firewall-cmd --query-panic
 
那怎么开启一个端口呢
添加
firewall-cmd --zone=public --add-port=80/tcp --permanent    (--permanent永久生效,没有此参数重启后失效)
重新载入
firewall-cmd --reload
查看
firewall-cmd --zone= public --query-port=80/tcp
删除
firewall-cmd --zone= public --remove-port=80/tcp --permanent
深度学习作为人工智能的关键分支,依托多层神经网络架构对高维数据进行模式识别函数逼近,广泛应用于连续变量预测任务。在Python编程环境中,得益于TensorFlow、PyTorch等框架的成熟生态,研究者能够高效构建面向回归分析的神经网络模型。本资源库聚焦于通过循环神经网络及其优化变体解决时序预测问题,特别针对传统RNN在长程依赖建模中的梯度异常现象,引入具有门控机制的长短期记忆网络(LSTM)以增强序列建模能力。 实践案例涵盖从数据预处理到模型评估的全流程:首先对原始时序数据进行标准化处理滑动窗口分割,随后构建包含嵌入层、双向LSTM层及全连接层的网络结构。在模型训练阶段,采用自适应矩估计优化器配合早停策略,通过损失函数曲线监测过拟合现象。性能评估不仅关注均方根误差等量化指标,还通过预测值真实值的轨迹可视化进行定性分析。 资源包内部分为三个核心模块:其一是经过清洗的金融时序数据集,包含标准化后的股价波动记录;其二是模块化编程实现的模型构建、训练验证流程;其三是基于Matplotlib实现的动态结果展示系统。所有代码均遵循面向对象设计原则,提供完整的类型注解异常处理机制。 该实践项目揭示了深度神经网络在非线性回归任务中的优势:通过多层非线性变换,模型能够捕获数据中的高阶相互作用,而Dropout层正则化技术的运用则保障了泛化能力。值得注意的是,当处理高频时序数据时,需特别注意序列平稳性检验季节性分解等预处理步骤,这对预测精度具有决定性影响。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值